Предел и его свойства и противопоказания

Хотя функция в нуле не определена, когда приближается к нулю, то её значение становится сколь угодно близко к 1 в окрестности нуля, иными словами — предел функции в нуле равен 1.
У этого термина существуют и другие значения, см. Предел.
График функции, предел которой при аргументе, стремящемся к бесконечности, равен .
Преде́л фу́нкции (предельное значение функции) в заданной точке, предельной для области определения функции, — такая величина, к которой стремится значение рассматриваемой функции при стремлении её аргумента к данной точке. Одно из основных понятий математического анализа.
Предел функции является обобщением понятия предела последовательности: изначально под пределом функции в точке понимали предел последовательности элементов области значений функции, являющихся образами точек такой последовательности элементов области определения функции, которая сходится к точке, в которой рассматривается предел. Если такой предел существует, то говорят, что функция сходится к указанному значению, иначе говорят, что функция расходится.
Наиболее часто определение предела функции формулируют на языке окрестностей. То, что предел функции рассматривается только в точках, предельных для области определения функции, означает, что в каждой окрестности данной точки есть точки области определения. Это позволяет говорить о стремлении аргумента функции к данной точке. Предельная точка области определения не обязана принадлежать самой области определения: например, можно рассматривать предел функции на концах открытого интервала, на котором определена функция (сами концы интервала в область определения не входят).
В общем случае необходимо точно указывать способ сходимости функции, для чего вводят т. н. базу подмножеств области определения функции, и тогда формулируют определение предела функции по (заданной) базе. В этом смысле система проколотых окрестностей данной точки — частный случай такой базы множеств.
Поскольку на расширенной вещественной прямой можно построить базу окрестностей бесконечно удалённой точки, то оказывается допустимым описание предела функции при стремлении аргумента к бесконечности, а также описание ситуации, когда функция в заданной точке сама стремится к бесконечности. Предел последовательности (как предел функции натурального аргумента), как раз предоставляет пример сходимости по базе «стремление аргумента к бесконечности».
Отсутствие предела функции в данной точке означает, что для любого заранее заданного значения области значений существует окрестность этого значения такая, что в любой сколь угодно малой окрестности точки, в которой функция принимает заданное значение, существуют точки, значение функции в которых окажется за пределами указанной окрестности.
Если в некоторой точке области определения функции существует предел и этот предел равен значению функции в данной точке, то функция называется непрерывной в данной точке.
Определения[править | править код]
Рассмотрим функцию , определённую на некотором множестве , которое имеет предельную точку (которая, в свою очередь, не обязана ему принадлежать). Существуют разные определения предела функции, сформулированные Гейне, Коши.
Предел функции по Гейне[править | править код]
Значение называется пределом (предельным значением) функции в точке , если для любой последовательности точек , сходящейся к , но не содержащей в качестве одного из своих элементов (то есть в проколотой окрестности ), последовательность значений функции сходится к [1].
Предел функции по Коши[править | править код]
Значение называется пределом (предельным значением) функции в точке , если для любого наперёд взятого положительного числа найдётся отвечающее ему положительное число такое, что для всех аргументов , удовлетворяющих условию , выполняется неравенство: [1].
Окрестностное определение предела по Коши[править | править код]
Значение называется пределом (предельным значением) функции в точке , если для любой окрестности точки существует проколотая окрестность точки такая, что образ этой окрестности лежит в . Фундаментальное обоснование данного определения предела можно найти в статье Предел вдоль фильтра.
Предел по базе множеств[править | править код]
Наиболее общим определением является определение предела функции по базе (по базису фильтра, по фильтру).
Пусть — некоторая база подмножеств области определения. Тогда
Если — предельная точка множества , то это означает, что каждая проколотая окрестность точки в множестве не пуста, а, значит, существует база проколотых окрестностей в точке . Эта база имеет специальное обозначение «» и читается «при , стремящемся к по множеству ». Если область определения функции совпадает с , то значок множества опускается, тогда база обозначается совсем просто «» и читается «при , стремящемся к ».
При рассмотрении только числовых функций вещественного переменного также рассматриваются и базы односторонних окрестностей. Для этого рассматриваются два множества:
Соответственно этому вводятся две базы:
Эквивалентность определений[править | править код]
Все данные выше определения предела функции в точке эквивалентны.[1] Иными словами, из любого из них можно вывести любое другое, то есть выполнение условий одного из них неизбежно влечёт выполнение всех остальных.
Вариации и обобщения[править | править код]
Односторонний предел[править | править код]
Односторонний предел числовой функции в точке — это специфический предел, подразумевающий, что аргумент функции приближается к указанной точке с определённой стороны (слева или справа). Числовая функция имеет предел в точке тогда и только тогда, когда она имеет в этой точке совпадающие левый и правый пределы.
Предел вдоль фильтра[править | править код]
Предел функции вдоль фильтра — это обобщение понятия предела на случай произвольной области определения функции. Задавая частные случаи области определения и базиса фильтра на ней, можно получить многие приведённые в этой статье определения пределов.
Пределы на бесконечности[править | править код]
Предел функции на бесконечности описывает поведение значений данной функции, когда её аргумент становится бесконечно большим. Существуют различные определения таких пределов, но они эквивалентны между собой.
Предел на бесконечности по Гейне[править | править код]
- Пусть числовая функция задана на множестве , в котором найдётся сколь угодно большой элемент, то есть для всякого положительного в нём найдётся элемент, лежащий за границами отрезка . В этом случае число называется пределом функции на бесконечности, если для всякой бесконечно большой последовательности точек соответствующая последовательность частных значений функции в этих точках сходится к числу .
- Пусть числовая функция задана на множестве , в котором для любого числа найдётся элемент, лежащий правее него. В этом случае число называется пределом функции на плюс бесконечности, если для всякой бесконечно большой последовательности положительных точек соответствующая последовательность частных значений функции в этих точках сходится к числу .
- Пусть числовая функция задана на множестве , в котором для любого числа найдётся элемент, лежащий левее него. В этом случае число называется пределом функции на минус бесконечности, если для всякой бесконечно большой последовательности отрицательных точек соответствующая последовательность частных значений функции в этих точках сходится к числу .
Предел на бесконечности по Коши[править | править код]
- Пусть числовая функция задана на множестве , в котором найдётся сколь угодно большой элемент, то есть для всякого положительного в нём найдётся элемент, лежащий за границами отрезка . В этом случае число называется пределом функции на бесконечности, если для произвольного положительного числа отыщется отвечающее ему положительное число такое, что для всех точек, превышающих по абсолютному значению, справедливо неравенство .
- Пусть числовая функция задана на множестве , в котором для любого числа найдётся элемент, лежащий правее него. В этом случае число называется пределом функции на плюс бесконечности, если для произвольного положительного числа найдётся отвечающее ему положительное число такое, что для всех точек, лежащих правее , справедливо неравенство .
- Пусть числовая функция задана на множестве , в котором для любого числа найдётся элемент, лежащий левее него. В этом случае число называется пределом функции на минус бесконечности, если для произвольного положительного числа найдётся отвечающее ему положительное число такое, что для всех точек, лежащих левее , справедливо неравенство .
Окрестностное определение по Коши[править | править код]
Пусть функция определена на множестве , имеющем элементы вне любой окрестности нуля. В этом случае точка называется пределом функции на бесконечности, если для любой её малой окрестности найдётся такая достаточно большая окрестность нуля, что значения функции в точках, лежащих вне этой окрестности нуля, попадают в эту окрестность точки .
Частичный предел[править | править код]
Для функции, как и для последовательности, можно ввести понятие частичного предела. Число называется частичным пределом функции в точке , если для какой-либо последовательности справедливо равенство . Наибольший из частичных пределов называется верхним пределом функции в точке и обозначается , наименьший из частичных пределов называется нижним пределом функции в точке и обозначается . Для существования предела функции в точке необходимо и достаточно, чтобы [2].
Обозначения[править | править код]
Если в точке у функции существует предел, равный , то говорят, что функция стремится к при стремлении к , и пишут одним из следующих способов:
Если у функции существует предел на бесконечности, равный , то говорят, что функция стремится к при стремлении к бесконечности, и пишут одним из следующих способов:
Если у функции существует предел на плюс бесконечности, равный , то говорят, что функция стремится к при стремлении к плюс бесконечности, и пишут одним из следующих способов:
Если у функции существует предел на минус бесконечности, равный , то говорят, что функция стремится к при стремлении к минус бесконечности, и пишут одним из следующих способов:
Свойства пределов числовых функций[править | править код]
Пусть даны числовые функции и .
- Одна и та же функция в одной и той же точке может иметь только один предел.
- Сходящаяся функция локально и никак иначе сохраняет знак. Более обще,
где — проколотая окрестность точки .
- В частности, функция, сходящаяся к положительному (отрицательному) пределу, остаётся положительной (отрицательной) в некоторой окрестности предельной точки:
- Сходящаяся функция локально ограничена в окрестности предельной точки:
- Отделимость от нуля функций, имеющих предел, отличный от нуля.
- Операция взятия предела сохраняет нестрогие неравенства.
- Правило двух милиционеров
- Предел суммы равен сумме пределов:
- Предел разности равен разности пределов:
- Предел произведения равен произведению пределов:
- Предел частного равен частному пределов.
Примеры[править | править код]
См. также[править | править код]
- Правило Лопиталя
- Замечательные пределы
- Повторный предел
- Непрерывная функция
- Список пределов
Примечания[править | править код]
Литература[править | править код]
- Математический энциклопедический словарь / Под ред. Ю. В. Прохорова. — М.: Советская энциклопедия, 1988. — С. 482—483. — 847 с.
- Зорич В. А. Математический анализ. — М..
Ссылки[править | править код]
- Предел функции . Габович. И. Квант.1980 №10
- Предел функции в точке. Теоретическая справка
Определение предела функции
Первое определение предела функции по Гейне
Предел функции (по Гейне) при ее аргументе x, стремящемся к x0 – это такое конечное число или бесконечно удаленная точка a, для которой выполняются следующие условия:
1) существует такая проколотая окрестность точки x0, на которой функция f(x) определена;
2) для любой последовательности , сходящейся к :
,
элементы которой принадлежат окрестности , последовательность сходится к a:
.
Предел функции обозначают так:
.
Или при .
Здесь a и x0 могут быть как конечными числами, так и бесконечно удаленными точками: .
Для бесконечно удаленных точек приняты следующие обозначения:
.
Проколотая окрестность конечной точки может быть как двусторонней, так и односторонней. В последнем случае, для левой окрестности пишут:
.
Для правой окрестности:
.
С помощью логических символов существования и всеобщности это определение можно записать следующим образом:
.
См. «Универсальное определение предела функции по Гейне и по Коши».
Второе определение по Коши
Предел функции (по Коши) при ее аргументе x, стремящемся к x0 – это такое конечное число или бесконечно удаленная точка a, для которой выполняются следующие условия:
1) существует такая проколотая окрестность точки x0, на которой функция f(x) определена;
2) для любой окрестности точки a, принадлежащей , существует такая проколотая окрестность точки x0, на которой значения функции принадлежат выбранной окрестности точки a:
при .
Здесь a и x0 также могут быть как конечными числами, так и бесконечно удаленными точками. С помощью логических символов существования и всеобщности это определение можно записать следующим образом:
.
Если в качестве множества взять левую или правую окрестность конечной точки, то получим определение предела по Коши слева или справа.
Теорема
Определения предела функции по Коши и по Гейне эквивалентны.
Доказательство
Применяемые окрестности точек
В приведенном выше определении применяются произвольные окрестности точек. Например, проколотой окрестностью конечной точки является множество , где – два положительных числа, которые определяют размер окрестности. Более подробно, см. «Окрестность точки».
Тогда, фактически, определение по Коши означает следующее.
Для любых положительных чисел , существуют числа , так что для всех x, принадлежащих проколотой окрестности точки : , значения функции принадлежат окрестности точки a: ,
где , .
С таким определением не совсем удобно работать, поскольку окрестности определяются с помощью четырех чисел . Но его можно упростить, если ввести окрестности с равноудаленными концами. То есть можно положить , . Тогда мы получим определение, которое проще использовать при доказательстве теорем. При этом оно является эквивалентным определению, в котором используются произвольные окрестности. Доказательство этого факта приводится в разделе «Эквивалентность определений предела функции по Коши».
Тогда можно дать единое определение предела функции в конечных и бесконечно удаленных точках:
.
Здесь для конечных точек
; ;
.
Любые окрестности бесконечно удаленных точек являются проколотыми:
; ; .
См. «Окрестность точки»
Далее мы приводим формулировки определений предела функции по Коши для разных случаев, используя определения окрестностей с равноудаленными концами.
Конечные пределы функции в конечных точках
Число a называется пределом функции f(x) в точке x0, если
1) функция определена на некоторой проколотой окрестности конечной точки ;
2) для любого существует такое , зависящее от , что для всех x, для которых , выполняется неравенство
.
С помощью логических символов существования и всеобщности определение предела функции можно записать следующим образом:
.
Односторонние пределы.
Левый предел в точке (левосторонний предел):
.
Правый предел в точке (правосторонний предел):
.
Пределы слева и справа часто обозначают так:
; .
См. «Определение предела функции в конечной точке»
Конечные пределы функции в бесконечно удаленных точках
Аналогичным образом определяются пределы в бесконечно удаленных точках.
.
.
.
См. «Определение предела функции на бесконечности»
Бесконечные пределы функции
.
Также можно ввести определения бесконечных пределов определенных знаков, равных и :
.
.
Свойства и теоремы предела функции
Далее мы считаем, что рассматриваемые функции определены в соответствующей проколотой окрестности точки , которая является конечным числом или одним из символов: . Также может быть точкой одностороннего предела, то есть иметь вид или . Окрестность является двусторонней для двустороннего предела и односторонней для одностороннего.
Основные свойства
Если значения функции f(x) изменить (или сделать неопределенными) в конечном числе точек x1, x2, x3, … xn, то это изменение никак не повлияет на существование и величину предела функции в произвольной точке x0.
Если существует конечный предел , то существует такая проколотая окрестность точки x0, на которой функция f(x) ограничена:
.
Пусть функция имеет в точке x0 конечный предел, отличный от нуля:
.
Тогда, для любого числа c из интервала , существует такая проколотая окрестность точки x0, что для ,
, если ;
, если .
Если, на некоторой проколотой окрестности точки , – постоянная, то .
Если существуют конечные пределы и и на некоторой проколотой окрестности точки x0
,
то .
Если , и на некоторой окрестности точки
,
то .
В частности, если на некоторой окрестности точки
,
то если , то и ;
если , то и .
Если на некоторой проколотой окрестности точки x0:
,
и существуют конечные (или бесконечные определенного знака) равные пределы:
, то
.
Доказательства основных свойств приведены на странице
«Основные свойства предела функции».
Арифметические свойства предела функции
Пусть функции и определены в некоторой проколотой окрестности точки . И пусть существуют конечные пределы:
и .
И пусть C – постоянная, то есть заданное число. Тогда
;
;
;
, если .
Если , то .
Доказательства арифметических свойств приведены на странице
«Арифметические свойства предела функции».
Критерий Коши существования предела функции
Теорема
Для того, чтобы функция , определенная на некоторой проколотой окрестности конечной или бесконечно удаленной точки x0, имела в этой точке конечный предел, необходимо и достаточно, чтобы для любого ε > 0 существовала такая проколотая окрестность точки x0, что для любых точек и из этой окрестности, выполнялось неравенство:
.
«Доказательство критерия Коши».
Предел сложной функции
Теорема о пределе сложной функции
Пусть функции и имеют пределы:
;
.
И пусть существует такая проколотая окрестность точки , на которой
.
Тогда существует предел сложной функции , и он равен :
.
Здесь – конечные или бесконечно удаленные точки: . Окрестности и соответствующие им пределы могут быть как двусторонние, так и односторонние.
Доказательство
Теорема о пределе сложной функции применяется в том случае, когда функция не определена в точке или имеет значение, отличное от предельного . Для применения этой теоремы, должна существовать проколотая окрестность точки , на которой множество значений функции не содержит точку :
.
Если функция непрерывна в точке , то знак предела можно применять к аргументу непрерывной функции:
.
Далее приводится теорема, соответствующая этому случаю.
Теорема о пределе непрерывной функции от функции
Пусть существует предел функции t = g(x) при x → x0, и он равен t0:
.
Здесь точка x0 может быть конечной или бесконечно удаленной: .
И пусть функция f(t) непрерывна в точке t0.
Тогда существует предел сложной функции f(g(x)), и он равен f(t0):
.
Доказательство теоремы приводится на странице
«Предел и непрерывность сложной функции».
Бесконечно малые и бесконечно большие функции
Бесконечно малые функции
Определение
Функция называется бесконечно малой при , если
.
Сумма, разность и произведение конечного числа бесконечно малых функций при является бесконечно малой функцией при .
Произведение функции, ограниченной на некоторой проколотой окрестности точки , на бесконечно малую при является бесконечно малой функцией при .
Для того, чтобы функция имела конечный предел , необходимо и достаточно, чтобы
,
где – бесконечно малая функция при .
Доказательства свойств изложены в разделе
«Свойства бесконечно малых функций».
Бесконечно большие функции
Определение
Функция называется бесконечно большой при , если
.
Свойства бесконечно больших функций
Сумма или разность ограниченной функции, на некоторой проколотой окрестности точки , и бесконечно большой функции при является бесконечно большой функцией при .
Если функция является бесконечно большой при , а функция – ограничена, на некоторой проколотой окрестности точки , то
.
Если функция , на некоторой проколотой окрестности точки , удовлетворяет неравенству:
,
а функция является бесконечно малой при :
, и (на некоторой проколотой окрестности точки ), то
.
Cм. также: Свойства неравенств с бесконечно большими функциями ⇑.
Доказательства свойств изложены в разделе
«Свойства бесконечно больших функций».
Связь между бесконечно большими и бесконечно малыми функциями
Из двух предыдущих свойств вытекает связь между бесконечно большими и бесконечно малыми функциями.
Если функция являются бесконечно большой при , то функция является бесконечно малой при .
Если функция являются бесконечно малой при , и , то функция является бесконечно большой при .
Связь между бесконечно малой и бесконечно большой функцией можно выразить символическим образом:
, .
Если бесконечно малая функция имеет определенный знак при , то есть положительна (или отрицательна) на некоторой проколотой окрестности точки , то этот факт можно выразить так:
.
Точно также если бесконечно большая функция имеет определенный знак при , то пишут:
.
Тогда символическую связь между бесконечно малыми и бесконечно большими функциями можно дополнить следующими соотношениями:
, ,
, .
Дополнительные формулы, связывающие символы бесконечности, можно найти на странице
«Бесконечно удаленные точки и их свойства».
Пределы монотонных функций
Определение
Функция , определенная на некотором множестве действительных чисел X называется строго возрастающей, если для всех таких что выполняется неравенство:
.
Соответственно, для строго убывающей функции выполняется неравенство:
.
Для неубывающей:
.
Для невозрастающей:
.
Отсюда следует, что строго возрастающая функция также является неубывающей. Строго убывающая функция также является невозрастающей.
Функция называется монотонной, если она неубывающая или невозрастающая.
Теорема
Пусть функция не убывает на интервале , где .
Если она ограничена сверху числом M: , то существует конечный предел . Если не ограничена сверху, то .
Если ограничена снизу числом m: , то существует конечный предел . Если не ограничена снизу, то .
Если точки a и b являются бесконечно удаленными, то в выражениях под знаками пределов подразумевается, что .
Эту теорему можно сформулировать более компактно.
Пусть функция не убывает на интервале , где . Тогда существуют односторонние пределы в точках a и b:
;
.
Аналогичная теорема для невозрастающей функции.
Пусть функция не возрастает на интервале , где . Тогда существуют односторонние пределы:
;
.
Доказательство теоремы изложено на странице
«Пределы монотонных функций».
Определение функции
Функцией y = f(x) называется закон (правило), согласно которому, каждому элементу x множества X ставится в соответствие один и только один элемент y множества Y.
Элемент x ∈ X называют аргументом функции или независимой переменной.
Элемент y ∈ Y называют значением функции или зависимой переменной.
Множество X называется областью определения функции.
Множество элементов y ∈ Y, которые имеют прообразы в множестве X, называется областью или множеством значений функции.
Более подробно, см. страницы: «Определение функции»; «Способы задания функций».
Далее, если это особо не оговорено, мы рассматриваем функции, области определения и множества значений которых принадлежат множеству действительных чисел.
Действительная функция называется ограниченной сверху (снизу), если существует такое число M, что для всех выполняется неравенство:
.
Числовая функция называется ограниченной, если существует такое число M, что для всех :
.
Верхней гранью или точной верхней границей действительной функции называют наименьшее из чисел, ограничивающее область ее значений сверху. То есть это такое число s, для которого для всех и для любого , найдется такой аргумент , значение функции от которого превосходит s′: .
Верхняя грань функции может обозначаться так:
.
Соответственно нижней гранью или точной нижней границей действительной функции называют наибольшее из чисел, ограничивающее область ее значений снизу. То есть это такое число i, для которого для всех и для любого , найдется такой аргумент , значение функции от которого меньше чем i′: .
Нижняя грань функции может обозначаться так:
.
Использованная литература:
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.
Автор: Олег Одинцов. Опубликовано: 04-04-2018 Изменено: 09-06-2020