Противопоказания для проведения экг

Противопоказания для проведения экг thumbnail

Электрокардиография (ЭКГ) входит в необходимый минимум средств медицинской диагностики состояния пациента. Преимуществами метода электрокардиографии являются отсутствие потребности в специальной подготовке пациента и оперативность получения данных о его сердечной деятельности. Современные электрокардиографы делают процесс обследования быстрым и комфортным.

Первый электрокардиограф был создан в 1903 году Вильямом Эйтховеном, который впоследствии получил за свое изобретение Нобелевскую премию. Ни один другой широко используемый метод клинической диагностики пока не удостоился подобной награды. К настоящему времени «зубцы» электрокардиограммы стали узнаваемым и популярным символом, который можно увидеть на логотипах и инфографике. Чем же обусловлен такой успех метода?

Суть метода

Электрокардиография (ЭКГ) – метод медицинского исследования сердца, который основан на регистрации электрических потенциалов, возникающих во время сердечной деятельности. На теле пациента размещаются специальные датчики, а считанные с их помощью сигналы выводятся на бумагу или пленку с помощью самописца. В результате получается график, называемый электрокардиограммой. Показания ЭКГ играют важную роль в диагностике сердечных заболеваний.

Современные приборы для ЭКГ – электрокардиографы – бывают портативными и стационарными. Портативные электрокардиографы используются бригадами скорой помощи, сотрудниками небольших медицинских кабинетов и клиник. Стационарный электрокардиограф менее подвержен воздействию помех и дает более точные показания. Такими приборами пользуются в более крупных лечебных учреждениях. Стационарные и портативные электрокардиографы могут быть разными по функциональности и удобству пользования. Новейшие модели электрокардиографов могут хранить в памяти сотни ЭКГ и выдавать предварительный диагноз в автоматическом режиме.

Когда электрокардиография необходима?

Для профилактики и раннего выявления сердечно-сосудистых заболеваний рекомендуется делать ЭКГ не реже одного раза в год. Показаниями к проведению ЭКГ также являются:

  • боли в грудной клетке;
  • одышка;
  • аритмия;
  • ухудшение общего самочувствия после физических или эмоциональных нагрузок;
  • перенесенные соматические или инфекционные заболевания, грозящие осложнениями;
  • предстоящая хирургическая операция;
  • первый и третий триместры беременности;
  • мониторинг состояния тяжелобольных.

ЭКГ-обследование безопасно, поскольку не оказывает воздействия на организм человека, а только регистрирует электрические импульсы, создаваемые сердцем. Противопоказаний для проведения ЭКГ не существует.

Проведение ЭКГ: особенности процедуры

Измерение ЭКГ рекомендуется проводить в теплых помещениях, удаленных от возможных источников электрических помех. Пациент должен быть раздет до пояса, голени следует освободить от одежды. Датчики (отведения) в общем случае устанавливаются на грудную клетку и конечности. Для обеспечения лучшего контакта кожи с датчиками используются специальные электропроводящие гели и растворы. Мышечная дрожь в холодном помещении или недостаточный контакт датчиков с кожей могут исказить показания. Исследование проводят в положении пациента лежа, реже – стоя. Регистрируется как минимум 6-10 сердечных циклов. Хотя специальной подготовки к ЭКГ не требуется, наиболее корректные результаты можно получить через два и более часа после приема пищи (натощак).

ЭКГ-методика имеет следующие разновидности:

  • универсальная ЭКГ с 12 отведениями (3 стандартных, 3 униполярных и 6 грудных);
  • ЭКГ с дополнительными грудными отведениями для детальной диагностики нарушений ритма и проводимости сердца;
  • ЭКГ с отведениями от внутренних органов – например, внутрипищеводная;
  • мониторинг по Холтеру с применением специального прибора, который устанавливается на пациенте на сутки для непрерывного снятия показаний;
  • ЭКГ с физическими или лекарственными нагрузками – для оценки реакции сердца на возможные медицинские назначения.

Результаты исследования

Кардиограмма представляет собой периодически повторяющийся комплекс направленных вверх и вниз зубцов. Зубцы на ЭКГ обозначают латинскими буквами, каждая из которых присваивается определенному участку сердца. Одноименные зубцы в показаниях разных датчиков могут иметь разную величину.

  1. Возбуждение сердечной мышцы начинается с предсердий. На ЭКГ это отображается в виде зубца Р. В норме он имеет высоту 1-2 мм и продолжительность 0,08-0,1 с.
  2. Расстояние от начала зубца Р до зубца Q (интервал РQ) демонстрирует время распространения возбуждения от предсердий к желудочкам. В норме это 0,12-0,2 с.
  3. Возбуждение желудочков отражает комплекс зубцов QRS. Его продолжительность в норме составляет 0,06-0,1 с.
  4. При снижении возбуждения желудочков записывается зубец Т. Интервалы ST и PQ в норме выглядят сходным образом и по амплитуде различаются не более чем на 1 мм.
  5. За один сердечный цикл принимается расстояние между двумя ближайшими зубцами R. Подсчитав количество этих циклов в одной минуте, можно получить частоту сердечного ритма.
  6. Интервал ТР соответствует расслабленному состоянию сердечной мышцы (диастоле), в это время записывается прямая линия. При остановке сердца ЭКГ представляет собой сплошную прямую линию без зубцов.
  7. По амплитудам зубцов рассчитывается положение так называемой электрической оси сердца, которая, как правило, совпадает с геометрической осью сердца. Направление электрической оси показывает правильность расположения сердца.

В результате анализа кардиограммы можно определить состояние сердца в целом, функциональное состояние миокарда и частоту сердечных сокращений. Поверхностный анализ данных ЭКГ может провести врач любой специальности. Для этого достаточно представлять себе ЭКГ сердца в норме, а также типичные отклонения – например, при инфаркте.

Новейшие модели электрокардиографов выполняют часть расшифровки автоматически. Однако полноценный анализ результатов ЭКГ с определением электрической оси сердца и описанием выявленных патологий может сделать только квалифицированный врач.

Расшифровка ЭКГ должна производиться с учетом анамнеза. Например, у беременных электрическая ось сердца может быть горизонтальной из-за того, что растущий плод оказывает давление на сердце и смещает его. Горизонтальная электрическая ось сердца является нормальной при беременности, но может свидетельствовать о наличии патологии в иных случаях.

Примеры заключений по ЭКГ:

  1. Ритм сердца синусовый, правильный, ЧСС 84 уд. за 1 мин. Нормальное положение электрической оси сердца.
  2. Ритм сердца синусовый, правильный. ЧСС 76 уд. за 1 мин. Горизонтальная электрическая ось сердца. Признаки гипертрофии левого желудочка.

Стоимость электрокардиографии

На такую простую и кратковременную процедуру, как электрокардиография, цена, как правило, доступна. Средняя стоимость ЭКГ с расшифровкой в Москве составляет 1200 руб.

Источник

Показания и противопоказания для ЭКГ с физической нагрузкой

• На ЭКГ, снятой в покое, у 50% больных с диагностированной ИБС изменения отсутствуют.

• Основным показанием к проведению ЭКГ-пробы с физической нагрузкой является необходимость подтвердить или исключить ИБС.

• В Германии стандартная методика проведения ЭКГ-пробы с физической нагрузкой проводится при помощи велоэргометра.

• Нагрузку прекращают при достижении субмаксимальной ЧСС (200 — возраст).

• Наиболее важным признаком является горизонтальная и нисходящая депрессия сегмента ST в отведениях V5 и V6. Депрессия сегмента ST на 1 мм подозрительна на ИБС, депрессия более чем на 2 мм — достоверный признак ИБС.

Ишемия миокарда как следствие коронарной недостаточности, как известно, играет важную роль в развитии инфаркта миокарда (ИМ). При легкой коронарной недостаточности у больного ИБС кровоток в состоянии покоя бывает достаточным для снабжения миокарда кислородом, поэтому на ЭКГ в покое характерные признаки ишемии миокарда отсутствуют.

По данным литературы, при доказанной ИБС изменения на ЭКГ в состоянии покоя могут отсутствовать примерно у половины больных.

ЭКГ-проба с физической нагрузкой служит как раз для того, чтобы выявлять ИБС с латентным течением, провоцируя недостаточность коронарного кровотока. На фоне выполнения нагрузки возникает несоответствие между потребностью миокарда в кислороде и его доставкой, т.е. ишемия миокарда, прежде всего, ЛЖ.

На ЭКГ это проявляется депрессией сегмента ST и отрицательным зубцом Т в отведениях V5 и V6 (например, при ишемии внутренних слоев миокарда появляется депрессия сегмента ST, при ишемии наружных слоев миокарда — отрицательный зубец Т).

Читайте также:  Противопоказания подмаренник настоящий фото

ЭКГ при ишемии миокарда

Показания и противопоказания для ЭКГ с физической нагрузкой

Проведение пробы под внимательным контролем врача со строгим соблюдением показаний и противопоказаний, как правило, безопасно. Ниже перечислены общеизвестные показания к ЭКГ-пробе с физической нагрузкой, которым следуют на практике.

Показания для ЭКГ с физической нагрузкой:

• Необходимость подтвердить или исключить ИБС

• Контроль динамики ИБС

• Контроль течения ИМ, а также за состоянием больного после выполненного ЧKB на коронарных артериях или коронарного шунтирования

• Нарушения ритма сердца, связанные с физической нагрузкой

• Контроль эффективности антиаритмической терапии

• Выявление латентной формы АГ

• Оценка толерантности к физической нагрузке больных с пороками сердца и контроль состояния больных после операции

• Оценка толерантности к физической нагрузке у людей со здоровым сердцем

Противопоказания для ЭКГ с физической нагрузкой:

• Тяжелая стенокардия

• ОКС

• Острый ИМ в первые 5 дней

• Аневризма сердца

• Декомпенсированная сердечная недостаточность

• Тяжелая АГ (АД в покое более 200/110 мм рт.ст.)

• Тяжелый аортальный стеноз

• Тяжелые желудочковые нарушения ритма

• Эндокардит или миокардит

• Тромбофлебит

• Острая ТЭЛА

Следует подчеркнуть, что при проведении ЭКГ-пробы с физической нагрузкой у больного с выраженной гипертрофией ЛЖ, прежде всего, связанной с аортальным стенозом, необходима особая осторожность, так как внезапное выполнение непривычной физической нагрузки может вызвать острую сердечную недостаточность, т.е. отек легких или фибрилляцию желудочков.

Осложнения ЭКГ с физической нагрузкой

Из-за возможности развития осложнений (хотя они и наблюдаются редко) при проведении пробы под рукой следует иметь дефибриллятор и медикаменты, необходимые для оказания экстренной медицинской помощи, в частности норадреналин, орципреналина сульфат (Алупент), атропин, лидокаин, нитроглицерин и фуросемид (Лазикс).

По данным литературы, частота развития ИМ при выполнении дозированной физической нагрузки составляет 2,4 случая, фибрилляции желудочков — 2,5 случая, а внезапной смерти — 1 случай на 10 000 проб. По данным большого исследования, в котором насчитывалось 50 000 пациентов, осложнения были отмечены у 6, в том числе у 1 — ИМ в день проведения нагрузочной пробы.

— Также рекомендуем «Методика проведения ЭКГ с физической нагрузкой»

Оглавление темы «ЭКГ (электрокардиограммы)»:

  1. Признаки нестабильной стенокардии напряжения на ЭКГ
  2. Признаки инфаркта миокарда без подъема сегмента ST на ЭКГ
  3. Признаки инфаркта миокарда с подъемом сегмента ST на ЭКГ
  4. Признаки инфаркта миокарда передней стенки на ЭКГ
  5. Признаки инфаркта миокарда задней и нижней стенки на ЭКГ
  6. Показания и противопоказания для ЭКГ с физической нагрузкой
  7. Методика проведения ЭКГ с физической нагрузкой
  8. Расшифровка ЭКГ после пробы с физической нагрузкой — велоэргометрии
  9. Изменение артериального давления (АД) при физической нагрузке
  10. Показания для холтеровского мониторинга электрокардиограммы (ЭКГ)

Источник

Основным методом диагностики в кардиологии является электрокардиография (ЭКГ). При работе сердца возникают электрические импульсы. Их регистрация дает возможность выявить патологии, нарушения в работе сердечной мышцы и сердечно-сосудистой системы на различных стадиях: от нарушений процесса кровоснабжения до выявления расположения инфаркта миокарда.

ЭКГ является одной из самых безопасных и доступных методик. Применяется как при плановых медицинских осмотрах, так и для диагностики патологий и вторичных изменений в сердце при заболеваниях других систем и органов. Подходит для обследования детей, беременных женщин, пациентов в тяжелом состоянии.

Применение:

Процедура электрокардиографии дает возможность выявить различные заболевания сердечно-сосудистой системы. ЭКГ применяется для получения следующих данных:

  • Определение источника, оценка частоты, диагностика нарушений сердечного ритма, уточнение вида аритмии;
  • Выявление ишемии (недостаточное кровоснабжение сердца);
  • Подтверждение наличия инфаркта, его оценка, локализация;
  • Определение состояния сердечной мышцы;
  • Выявление гипертрофии желудочков.

Диагностический потенциал метода не имеет аналогов. Совместно с другими необходимыми обследованиями позволяет в короткие сроки поставить точный диагноз, подобрать эффективное лечение, в том числе оперативное.

Показания

Электрокардиография может назначаться врачом или проводиться по инициативе пациента. Следует обратиться к специалисту при наличии следующих симптомов:

  • Головокружение, обмороки, одышка;
  • Не однократно возникающая внезапная слабость;
  • Не связанное с физическими нагрузками и эмоциональным состоянием учащенное сердцебиение;
  • Наличие болей в области груди.

Регулярно проходить процедуру ЭКГ рекомендуется:

  • людям, возраст которых более 40-45 лет;
  • тем, кто перенес острое инфекционное заболевание;
  • людям, которые подвержены таким факторам риска, как употребление алкоголя и курение.

Прямые показания:

  • Диагностированные случаи или подозрения на аритмию, гипертонию, инфаркт, ишемию, инсульт и другие заболевания сердечно-сосудистой системы;
  • Нарушение обмена веществ;
  • Нарушения функций щитовидной железы;
  • Сахарный диабет;
  • Хронические заболевания дыхательной системы;
  • Подготовка к госпитализации, операции.

Во время беременности процедуру необходимо проходить при постановке на учет, а также при наличии неблагоприятных симптомов (обмороки, головокружение, скачки давления, боли в груди).

Противопоказания

Процедура не имеет противопоказаний и ограничений. Исследование могут проходить дети, беременные и кормящие женщины. Кроме того проводится обследование плода (КТГ). ЭКГ не рекомендуется людям с деформацией грудной клетки, воспалительными заболеваниями кожи грудного отдела. Им назначают трансэзофагеальное обследование.

Подготовка

Особой подготовки к прохождению электрокардиографии не требуется. Перед началом процедуры необходимо восстановить дыхание, расслабиться 10-15 минут.

Как проводится ЭКГ

Безболезненное обследование не вызывает неприятных ощущений, длится около 10 минут.Пациент находится в положении лежа на удобной кушетке. Специалист закрепляет необходимое количество электродов на руках, ногах, груди. Специальный прибор электрокардиограф регистрирует показания. В режиме реального времени данные выводятся на монитор компьютера. Прибор распечатывает электрокардиограмму на особой ленте. Электрокардиограмма отображает работу сердца в виде кривой линии. Эта линия не хаотична, имеет определенные интервалы, зубцы, сегменты, которые в свою очередь показывают определенные этапы работы сердца. Запись состоит из 12 кривых. Шесть из них получены с грудных электродов (грудные отведения V1, V2, V3, V4, V5, V6), а остальные — с электродов, прикрепленных к рукам и ногам (три стандартных — I, II, III, три усиленных — aVL, aVR, aVF). 

Результаты

Врач проводит анализ полученных данных, выявляет нарушения. В течение 10-15 минут пациенту выдают заключение, при необходимости назначают дополнительную диагностику.

Норма показаний

Частота сердцебиения (ЧСС): 60-80 уд/мин, ритм: синусовый, электрическая ось сердца (ЭОС): 30-70 градусов. Во время беременности этот показатель может меняться и значение 70-90 градусов не является отклонением.
Многие современные клиники имеют возможность проводить ЭКГ на дому, что крайне важно при необходимости срочного обследования людей, имеющих заболевания сердечно-сосудистой системы.
В некоторых случаях стандартной процедуры ЭКГ бывает не достаточно для записи моментов приступа аритмии, болей в сердце, так как исследование длится не долго. Тогда пациенту назначают  холтеровское мониторирование ЭКГ. Небольшой прибор располагают на теле, и он от 1 до 3 дней ведет запись, в то время как человек занимается привычными делами. Данный вид обследования дает более точную и полную информацию о работе сердечной мышцы в различных условиях: при физических и эмоциональных нагрузках, в спокойном состоянии, во время сна.
Пройти обследование можно в любой больнице, поликлинике, медицинском центре.

Источник

Электрокардиограмма в 12 стандартных отведениях у мужчины 26 лет

Электрокардиогра́фия — методика регистрации и исследования электрических полей, образующихся при работе сердца. Электрокардиография представляет собой относительно недорогой, но ценный метод электрофизиологической инструментальной диагностики в кардиологии.

Прямым результатом электрокардиографии является получение электрокардиограммы (ЭКГ).

История[править | править код]

  • В XIX веке стало ясно, что сердце во время своей работы производит некоторое количество электричества. Первые электрокардиограммы были записаны Габриелем Липпманом с использованием ртутного электрометра.
Читайте также:  Лазерное омоложение кожи противопоказания

Кривые Липпмана имели монофазный характер, лишь отдалённо напоминая современные ЭКГ.

  • В 1872 году Александр Муирхед[en], как сообщается, прикрепил провода к запястью пациента с лихорадкой, чтобы получить электронную запись его сердцебиения[1].
  • В 1882 году Джон Бурдон-Сандерсон[en], работавший с лягушками, первым понял, что интервал между вариациями потенциала не был электрически неподвижным, и ввёл термин «изоэлектрический интервал» для этого периода[2].
  • В 1887 году Август Уоллер[3] изобрёл ЭКГ-аппарат, состоящий из капиллярного электрометра Липпмана[en], прикрепленного к проектору. След от сердцебиения проецировался на фотопластинку, которая сама была прикреплена к игрушечному поезду. Это позволило регистрировать сердцебиение в режиме реального времени.
  • В 1895 году Виллем Эйнтховен ввёл современное обозначение зубцов ЭКГ и описал некоторые нарушения в работе сердца. Он обозначил буквы P, Q, R, S и T в качестве отклонения от теоретической формы волны, которую он создал, используя уравнения. Эти уравнения корректировали фактическую форму волны, полученную с помощью капиллярного электрометра, чтобы компенсировать неточность этого инструмента. Использование букв, отличных от A, B, C и D (буквы, используемые для формы сигнала капиллярного электрометра), облегчило сравнение, когда неправильные и правильные линии были нарисованы на одном графике[4]. Эйнтховен, вероятно, выбрал начальную букву P, чтобы последовать примеру Декарта в геометрии[4]. Когда более точная форма волны была получена с использованием струнного гальванометра, который соответствовал скорректированной форме волны капиллярного электрометра, он продолжал использовать буквы P, Q, R, S и T[4], и эти буквы все ещё используются сегодня. Эйнтховен также описал электрокардиографические особенности ряда сердечно-сосудистых заболеваний.
  • В 1897 году французский инженер Клемен Адер изобрёл струнный гальванометр[en][5].
  • В 1901 году Эйнтховен, работавший в Лейдене (Нидерланды), использовал струнный гальванометр: первый практический ЭКГ-аппарат[6]. Это устройство было гораздо более чувствительным, чем капиллярный электрометр, который использовал Уоллер.
  • В 1924 году Эйнтховен был удостоен Нобелевской премии по медицине за новаторскую работу по разработке ЭКГ-аппарата[7][8].
  • К 1927 году General Electric разработала портативное устройство, которое могло бы производить электрокардиограммы без использования струнного гальванометра. Это устройство вместо этого объединяло ламповые усилители, аналогичные тем, которые использовались в радио, с внутренней лампой и движущимся зеркалом, которое направляло электрические импульсы на пленку[9].
  • В 1937 году Таро Такеми[en] изобрел новый портативный электрокардиограф[10].
  • Хотя основные принципы той эпохи все ещё используются сегодня, многие достижения в электрокардиографии были достигнуты после 1937 года. Приборостроение превратилось из громоздкого лабораторного аппарата в компактные электронные системы, которые часто включают компьютерную интерпретацию электрокардиограммы[11].
  • Первая отечественная книга по электрокардиографии вышла под авторством русского физиолога А. Самойлова в 1909 г. (Электрокардиограмма. Йенна, изд-во Фишер).

Применение[править | править код]

  • Определение частоты (см. также пульс) и регулярности сердечных сокращений (например, экстрасистолы (внеочередные сокращения), или выпадения отдельных сокращений — аритмии).
  • Показывает острое или хроническое повреждение миокарда (инфаркт миокарда, ишемия миокарда).
  • Может быть использована для выявления нарушений обмена калия, кальция, магния и других электролитов.
  • Выявление нарушений внутрисердечной проводимости (различные блокады).
  • Метод скрининга при ишемической болезни сердца, в том числе и при нагрузочных пробах.
  • Даёт понятие о физическом состоянии сердца (гипертрофия левого желудочка).
  • Может дать информацию о внесердечных заболеваниях, таких, как тромбоэмболия лёгочной артерии.
  • Позволяет удалённо диагностировать острую сердечную патологию (инфаркт миокарда, ишемия миокарда) с помощью кардиофона.
  • Обязательно применяется при прохождении диспансеризации.

Прибор[править | править код]

Первые электрокардиографы вели запись на фотоплёнке, затем появились чернильные и позже, тепловые самописцы, в большинстве современных приборов используется термопринтер, позволяющий сопровождать запись ЭКГ дополнительной информацией.
Скорость движения бумаги составляет обычно 50 мм/с.
В некоторых случаях скорость движения бумаги устанавливают на 12,5 мм/с, 25 мм/с или 100 мм/с.
В начале каждой записи регистрируется контрольный милливольт.
Обычно его амплитуда составляет 10 или, реже, 20 мм/мВ. Медицинские приборы имеют определённые метрологические характеристики, обеспечивающие воспроизводимость и сопоставимость измерений электрической активности сердца[12]. Полностью электронные приборы позволяют сохранять ЭКГ в компьютере.

Электроды[править | править код]

Для измерения разности потенциалов на различные участки тела накладываются электроды. Так как плохой электрический контакт между кожей и электродами создает помехи, то для обеспечения проводимости на участки кожи в местах контакта наносят токопроводящий гель. Ранее использовались марлевые салфетки, смоченные солевым раствором.

Фильтры[править | править код]

Применяемые в современных электрокардиографах фильтры сигнала позволяют получать более высокое качество электрокардиограммы, внося при этом некоторые искажения в форму полученного сигнала.
Низкочастотные фильтры 0,5—1 Гц позволяют уменьшать эффект плавающей изолинии, внося при этом искажения в форму сегмента ST.
Режекторный фильтр 50—60 Гц нивелирует сетевые наводки.
Антитреморный фильтр низкой частоты (35 Гц) подавляет артефакты, связанные с активностью мышц.

Нормальная ЭКГ[править | править код]

Соответствие участков ЭКГ с соответствующей фазой работы сердца.

Обычно на ЭКГ можно выделить 5 зубцов: P, Q, R, S, T. Иногда можно увидеть малозаметную волну U. Зубец P отображает процесс деполяризации миокарда предсердий, комплекс QRS — деполяризации желудочков, сегмент ST и зубец T отражают процессы реполяризации миокарда желудочков. Мнения исследователей относительно природы возникновения зубца U различаются. Одни считают, что он обусловлен реполяризацией папиллярных мышц или волокон Пуркинье; другие — что связан с вхождением ионов калия в клетки миокарда во время диастолы.

Процесс реполяризации (Repolarization) — фаза, во время которой восстанавливается исходный потенциал покоя мембраны клетки после прохождения через неё потенциала действия. Во время прохождения импульса происходит временное изменение молекулярной структуры мембраны, в результате которого ионы могут свободно проходить через неё. Во время реполяризации ионы диффундируют в обратном направлении для восстановления прежнего электрического заряда мембраны, после чего клетка оказывается готова к дальнейшей электрической активности.

Отведения[править | править код]

Каждая из измеряемых разностей потенциалов в электрокардиографии называется отведением.

Отведения I, II и III накладываются на конечности: I — правая рука (-, красный электрод) — левая рука (+, жёлтый электрод), II — правая рука (-) — левая нога (+, зелёный электрод), III — левая рука (-) — левая нога (+). С электрода на правой ноге показания не регистрируются, его потенциал близок к условному нулю, и он используется только для того, чтобы убрать помехи.

Регистрируют также усиленные отведения от конечностей: aVR, aVL, aVF — однополюсные отведения, они измеряются относительно усреднённого потенциала всех трёх электродов (система Вильсона) или относительно усредненного потенциала двух других электродов (система Гольдбергера, дает амплитуду примерно на 50 % большие). Следует заметить, что среди шести сигналов I, II, III, aVR, aVL, aVF только два являются линейно независимыми, то есть, зная сигналы только в каких-либо двух отведениях, можно, путём сложения/вычитания, найти сигналы в остальных четырёх отведениях.

При так называемом однополюсном отведении регистрирующий (или активный) электрод определяет разность потенциалов между точкой электрического поля, к которой он подведён, и условным электрическим нулём (например, по системе Вильсона).

Однополюсные грудные отведения обозначаются буквой V.

Схема установки электродов V1—V6.

ОтведенияРасположение регистрирующего электрода
V1В 4-м межреберье у правого края грудины
V2В 4-м межреберье у левого края грудины
V3На середине расстояния между V2 и V4
V4В 5-м межреберье по срединно-ключичной линии
V5На пересечении горизонтального уровня 4-го отведения и передней подмышечной линии
V6На пересечении горизонтального уровня 4-го отведения и средней подмышечной линии
V7На пересечении горизонтального уровня 4-го отведения и задней подмышечной линии
V8На пересечении горизонтального уровня 4-го отведения и срединно-лопаточной линии
V9На пересечении горизонтального уровня 4-го отведения и паравертебральной линии
Читайте также:  Ботулотоксины в косметологии противопоказания

В основном регистрируют 6 грудных отведений: с V1 по V6. Отведения V7-V8-V9 незаслуженно редко используются в клинической практике, хотя они дают более полную информацию о патологических процессах в миокарде задней (задне-базальной) стенки левого желудочка.

Для поиска и регистрации патологических феноменов в «немых» участках (см. невидимые зоны) миокарда применяют дополнительные отведения (не входящие в общепринятую систему):

  • Дополнительные задние отведения Вилсона, расположение электродов и соответственно нумерация, по аналогии с грудными отведениями Вилсона, продолжается в левую подмышечную область и заднюю поверхность левой половины грудной клетки. Специфичны для задней стенки левого желудочка.
  • Дополнительные высокие грудные отведения Вилсона, расположение отведений согласно нумерации, по аналогии с грудными отведениями Вилсона, на 1—2 межреберья выше стандартной позиции. Специфичны для базальных отделов передней стенки левого желудочка.
  • Брюшные отведения предложены в 1954 году J. Lamber. Специфичны для переднеперегородочного отдела левого желудочка, нижней и нижнебоковой стенок левого желудочка. В настоящее время практически не используются.
  • Отведения по Небу — Гуревичу. Предложены в 1938 году немецким учёным W. Nebh. Три электрода образуют приблизительно равносторонний треугольник, стороны которого соответствуют трём областям — задней стенке сердца, передней и прилегающей к перегородке. При регистрации электрокардиограммы в системе отведений по Небу при переключении регистратора в позицию aVL можно получить дополнительное отведение aVL-Neb, высокоспецифичное в отношении заднего инфаркта миокарда.

Правильное понимание нормальных и патологических векторов деполяризации и реполяризации клеток миокарда позволяют получить большое количество важной клинической информации.
Правый желудочек обладает малой массой, оставляя лишь незначительные изменения на ЭКГ, что приводит к затруднениям в диагностике его патологии, по сравнению с левым желудочком.

Электрическая ось сердца (ЭОС)[править | править код]

Линейка для ЭКГ с номограммами, облегчающими определение ЭОС

Электрическая ось сердца — проекция результирующего вектора возбуждения желудочков во фронтальной плоскости (проекция на ось I стандартного электрокардиографического отведения). Обычно она направлена вниз и вправо (нормальные значения: 30°…70°), но может и выходить за эти пределы у высоких людей, лиц с повышенной массой тела, детей (вертикальная ЭОС с углом 70°…90°, или горизонтальная — с углом 0°…30°).
Отклонение от нормы может означать как наличие каких-либо патологий (аритмии, блокады, тромбоэмболия), так и нетипичное расположение сердца (встречается крайне редко). Нормальная электрическая ось называется нормограммой. Отклонения её от нормы влево или вправо — соответственно левограммой или правограммой.

Другие методы[править | править код]

Внутрипищеводная электрокардиография[править | править код]

Активный электрод вводится в просвет пищевода.
Метод позволяет детально оценивать электрическую активность предсердий и атриовентрикулярного соединения.
Важен при диагностике некоторых видов блокад сердца.

Векторкардиография[править | править код]

Регистрируется изменение электрического вектора работы сердца в виде проекции объемной фигуры на плоскости отведений.

Прекардиальное картирование[править | править код]

На грудную клетку пациента закрепляются электроды (обычно матрица 6х6), сигналы от которых обрабатываются компьютером.
Используется в частности, как один из методов определения объёма повреждения миокарда при остром инфаркте миокарда.
К текущему моменту расценивается как устаревший.

Пробы с нагрузкой[править | править код]

Велоэргометрия используется для диагностики ИБС.

Холтеровское мониторирование[править | править код]

Система холтеровского мониторирования

Синоним — суточное мониторирование ЭКГ по Холтеру.

На теле пациента, который ведет обычный образ жизни, закрепляется регистрирующий блок, записывающий электрокардиографический сигнал от одного, двух, трёх или более отведений в течение суток или более. Дополнительно регистратор может иметь функции мониторирования артериального давления (СМАД). Одновременная регистрация нескольких параметров является перспективной в диагностике заболеваний сердечно-сосудистой системы.

Стоит упомянуть о семисуточном мониторировании ЭКГ по Холтеру, которое даёт исчерпывающую информацию об электрической деятельности сердца.

Результаты записи передаются в компьютер и обрабатываются врачом при помощи специального программного обеспечения.

Гастрокардиомониторирование[править | править код]

Одновременная запись электрокардиограммы и гастрограммы в течение суток. Технология и прибор для гастрокардиомониторирования аналогичны технологии и прибору для холтеровского мониторирования, только, кроме записи ЭКГ по трём отведениям, дополнительно записываются значения кислотности в пищеводе и (или) желудке, для чего используется рН-зонд, введённый пациенту трансназально. Применяется для дифференциальной диагностики кардио- и гастрозаболеваний.

Электрокардиография высокого разрешения[править | править код]

Метод регистрации ЭКГ и её высокочастотных, низкоамплитудных потенциалов, с амплитудой порядка 1—10 мкВ и с применением многоразрядных АЦП (16—24 бита).

См. также[править | править код]

Примечания[править | править код]

  1. Birse, Ronald M. Knowlden, Patricia E.: Muirhead, Alexander (1848–1920), electrical engineer (англ.). Oxford Dictionary of National Biography. Oxford University Press (23 September 2004). doi:10.1093/ref:odnb/37794. Дата обращения 20 января 2020.
  2. Rogers, Mark C. Historical Annotation: Sir John Scott Burdon-Sanderson (1828-1905) A Pioneer in Electrophysiology (англ.) // Circulation (англ.)русск. : journal. — Lippincott Williams & Wilkins (англ.)русск., 1969. — Vol. 40, no. 1. — P. 1—2. — ISSN 0009-7322. — doi:10.1161/01.CIR.40.1.1. — PMID 4893441.
  3. Waller A. D. A demonstration on man of electromotive changes accompanying the heart’s beat (англ.) // J Physiol (англ.)русск. : journal. — 1887. — Vol. 8, no. 5. — P. 229—234. — doi:10.1113/jphysiol.1887.sp000257. — PMID 16991463.
  4. 1 2 3 Hurst J. W. Naming of the Waves in the ECG, With a Brief Account of Their Genesis (англ.) // Circulation (англ.)русск. : journal. — Lippincott Williams & Wilkins (англ.)русск., 1998. — 3 November (vol. 98, no. 18). — P. 1937—1942. — doi:10.1161/01.CIR.98.18.1937. — PMID 9799216.
  5. Interwoven W. Un nouveau galvanometre (неопр.) // Arch Neerl Sc Ex Nat. — 1901. — Т. 6. — С. 625.
  6. Rivera-Ruiz M., Cajavilca C., Varon J. Einthoven’s String Galvanometer: The First Electrocardiograph (англ.) // Texas Heart Institute Journal / From the Texas Heart Institute of St. Luke’s Episcopal Hospital, Texas Children’s Hospital : journal. — 1927. — 29 September (vol. 35, no. 2). — P. 174—178. — PMID 18612490.
  7. Cooper J. K. Electrocardiography 100 years ago. Origins, pioneers, and contributors (англ.) // N Engl J Med : journal. — 1986. — Vol. 315, no. 7. — P. 461—464. — doi:10.1056/NEJM198608143150721. — PMID 3526152.
  8. ↑ The Nobel Prize in Physiology or Medicine 1924 (англ.) (недоступная ссылка). Нобелевский фонд. Дата обращения 10 октября 2012. Архивировано 10 октября 2012 года.
  9. Blackford, John M., M. D. Electrocardiography: A Short Talk Before the Staff of the Hospital (англ.) // Clinics of the Virginia Mason Hospital : journal. — 1927. — 1 May (vol. 6, no. 1). — P. 28—34.
  10. ↑ Dr. Taro Takemi (англ.), Takemi Program in International Health (27 August 2012).
  11. Mark, Jonathan B. Atlas of cardiovascular monitoring (неопр.). — New York: Churchill Livingstone (англ.)русск., 1998. — ISBN 978-0-443-08891-9.
  12. ↑ Государственный Реестр Средств измерений

Литература[править | править код]

  • Зудбинов Ю.И. Азбука ЭКГ. — Издание 3. — Ростов-на-Дону: «Феникс», 2003. — 160 с. — 5000 экз. — ISBN 5-222-02964-6.
  • Мясников А. Л. Экспериментальные некрозы миокарда. — М. Медицина, 1963.
  • Синельников Р. Д. Атлас анатомии человека. — М. Медицина, 1979. — Т. 2.
  • Brawnwald L. D. Heart disease. — 1992. — С. 122.
  • Спасский К. В. Про роль потенціалу фільтрації в походженні массажних хвиль та хвилі U, електрокардіограми, його вплив напараметри кінцевої частини шлуночкового комплексу. — Наукові записки Острозької академії, 1998. — Т. 1.
  • Спасский К. В. Роль потенциала фильтрации в происхождении волн реполяризации и массажных волн. — Минск: Медико-социальная экспертиза и реабилитация. Выпуск №3. часть №2, 2001.
  • Спасский К. В. Роль потенціалу плину у формуванні хвиль кінцевої частини шлуночкового комплексу ЄКГ. — Минск: Вісн?