Магнитные свойства и их свойства и противопоказания

Магнитные свойства и их свойства и противопоказания thumbnail

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 22 сентября 2016;
проверки требуют 14 правок.

Магнитные материалы, Магнетики — материалы, вступающие во взаимодействие с магнитным полем, выражающееся в его изменении, а также в других физических явлениях — изменение физических размеров, температуры, проводимости, возникновению электрического потенциала и т. д. В этом смысле к магнетикам относятся практически все вещества (поскольку ни у какого из них магнитная восприимчивость не равна нулю), большинство из них относится к классам диамагнетиков (имеющие небольшую отрицательную магнитную восприимчивость — и несколько ослабляющие магнитное поле) или парамагнетиков (имеющие небольшую положительную магнитную восприимчивость — и несколько усиливающие магнитное поле); более редко встречаются ферромагнетики (имеющие большую положительную магнитную восприимчивость — и намного усиливающие магнитное поле), о ещё более редких классах веществ по отношению к действию на них магнитного поля — см. ниже.

Магнитными материалами могут быть различные сплавы, химические соединения, жидкости.

Ферромагнетики делятся на две большие группы — Магнитотвёрдые материалы и Магнитомягкие материалы.

Также существуют другие типы магнитных материалов: магнитострикционные материалы, магнитооптические материалы, термомагнитные материалы.

Природа и строение магнитных материалов[править | править код]

Известно два различных механизма магнетизма:

  • зонный магнетизм;
  • молекулярный магнетизм.

Выделяют несколько основных типов магнетиков, различимых по конфигурации их магнитных структур:

  • диамагнетики
  • парамагнетики
  • ферромагнетики,
  • неколлинеарные ферромагнетики,
  • антиферромагнетики,
  • ферримагнетики,
  • аромагнетики[1],
  • гелимагнетики,
  • спиновые стёкла,
  • сперомагнетики,
  • асперомагнетики,
  • миктомагнетики,
  • сперимагнетики,
  • пьезомагнетики,
  • спиновая жидкость.

Области применения магнитных материалов[править | править код]

Некоторые области применения полимерных магнитов:

  1. Акустические системы, реле и бесконтактные датчики
  2. Электромашины, магнитные сепараторы, холодильники
  3. Магнитные элементы кодовых замков и охранной сигнализации
  4. Тахогенераторы, датчики положения, электроизмерительные приборы
  5. Медицина ( магнитотерапия, магнитные матрацы)
  6. Автоматизированное шоссе, где в США предусматривается разместить до полутонны ферритовых магнитопластов на одну милю шоссе для автоматического управления движением автомобиля, оснащенного специальным компьютером и системой слежения
  7. Магнитное покрытие для полов офисов и промышленных помещений
  8. Магнитные компоненты для глушителей автомобилей (в Европе на эти цели уходит 23000 тонн магнитопластов)
  9. Периферийные устройства компьютеров, мобильные телефоны, фотоаппараты, кинокамеры
  10. Магнитные устройства для обработки воды, углеводородного топлива, масел; магнитные фильтры
  11. Магнитные устройства для использования в рекламе, торговле, при оснащении выставок, конференций, спортивных мероприятий и так далее
  12. Неразрушающие методы контроля ( Магнитопорошковый контроль)

Примечания[править | править код]

Литература[править | править код]

  • Магнитомягкие материалы для современной силовой электроники
  • Наиболее часто задаваемые вопросы по магнитомягким магнитным материалам

Источник

Магнитными свойствами обладают в той или иной мере все материалы, так как эти свойства являются отражением структурных закономерностей, присущих веществу на микроуровне. Особенности структуры обусловливают различия в магнитных свойствах веществ, то есть в характере их взаимодействия с магнитным полем.

Строение вещества и магнетизм

Первая теория, объясняющая природу магнетизма через взаимосвязь электрических и магнитных явлений, создана французским физиком Ж.-М. Ампером в 20-х годах XIX века. В рамках этой теории Ампер предположил наличие в физических телах микроскопических замкнутых токов, обычно компенсирующих друг друга. Но у веществ, обладающих магнитными свойствами, такие «молекулярные токи» создают поверхностный ток, в результате чего материал становится постоянным магнитом. Эта гипотеза не нашла подтверждения, за исключением одной важнейшей идеи – о микротоках как источниках магнитных полей.

Микротоки в веществе действительно существуют благодаря движению электронов в атомах и создают магнитный момент. Кроме того, электроны имеют собственный магнитный момент квантовой природы.

Суммарный магнитный момент вещества, то есть совокупности элементарных токов в нем, в отношении к единице объема, определяет состояние намагниченности макроскопического тела. У большей части веществ моменты частиц ориентированы неупорядоченно (ведущую роль в этом играют тепловые хаотические колебания), и намагниченность практически равна нулю.

Одна из конфигураций магнитного поля

Поведение вещества в магнитном поле

При действии внешнего магнитного поля векторы магнитных моментов частиц изменяют направление – тело намагничивается, в нем появляется собственное магнитное поле. Характер этого изменения и его интенсивность, определяющие магнитные свойства веществ, обусловлены различными факторами:

  • особенности структуры электронных оболочек в атомах и молекулах вещества;
  • межатомные и межмолекулярные взаимодействия;
  • особенности структуры кристаллических решеток (анизотропия);
  • температура вещества;
  • напряженность и конфигурация магнитного поля и так далее.

Намагниченность вещества пропорциональна напряженности магнитного поля в нем. Их соотношение определяется особым коэффициентом – магнитной восприимчивостью. У вакуума она равна нулю, у некоторых веществ отрицательна.

Величину, характеризующую соотношение магнитной индукции и напряженности поля в веществе, принято называть магнитной проницаемостью. В вакууме индукция и напряженность совпадают, и проницаемость его равна единице. Магнитную проницаемость вещества можно выражать как относительную величину. Это соотношение абсолютных значений ее для данного вещества и для вакуума (последняя величина принята в качестве магнитной постоянной).

Классификация веществ по магнитным свойствам

По типу поведения различных твердых материалов, жидкостей, газов в магнитном поле выделяют несколько групп:

  • диамагнетики;
  • парамагнетики;
  • ферромагнетики;
  • ферримагнетики;
  • антиферромагнетики.

Основные магнитные характеристики вещества, лежащие в основе классификации – это магнитная восприимчивость и магнитная проницаемость. Охарактеризуем основные свойства, присущие каждой группе.

Читайте также:  Почки осины полезные свойства и противопоказания

Диамагнетик и парамагнетик в магнитном поле

Диамагнетики

В силу некоторых особенностей строения электронных облаков у атомов (или молекул) диамагнетиков нет магнитного момента. Он появляется при возникновении внешнего поля. Индуцированное, наведенное поле имеет противоположное направление, и результирующее поле оказывается несколько слабее, чем внешнее. Правда, разница эта не может быть существенной.

Магнитная восприимчивость диамагнетиков выражается отрицательными числами с порядком величины от 10-4 до 10-6 и не зависит от напряженности поля; магнитная проницаемость ниже, чем у вакуума, на тот же порядок величины.

Наложение неоднородного магнитного поля ведет к тому, что диамагнетик выталкивается этим полем, так как стремится сместиться в область, где поле слабее. На этой особенности магнитных свойств веществ данной группы основан эффект диамагнитной левитации.

Диамагнетики представляют обширную группу веществ. В нее входят такие металлы, как медь, цинк, золото, серебро, висмут. Также к ней относятся кремний, германий, фосфор, азот, водород, инертные газы. Из сложных веществ – вода, многие соли, органические соединения. Идеальные диамагнетики – это сверхпроводники. Магнитная проницаемость их равна нулю. Поле внутрь сверхпроводника проникнуть не может.

Парамагнетики

Принадлежащим к данной группе веществам свойственна положительная магнитная восприимчивость (очень невысокая, порядка 10-5 – 10-6). Намагничиваются они параллельно вектору накладываемого поля, то есть втягиваются в него, но взаимодействие парамагнетиков с ним очень слабое, как и у диамагнетиков. Магнитная проницаемость их близка к значению проницаемости вакуума, только слегка превосходит его.

Магний - парамагнетик

В отсутствие внешнего поля парамагнетики, как правило, не обладают намагниченностью: их атомы имеют собственные магнитные моменты, но ориентированы они хаотически из-за тепловых колебаний. При низких температурах парамагнетики могут иметь собственную намагниченность малой величины, сильно зависящую от внешних воздействий. Однако влияние теплового движения слишком велико, вследствие чего элементарные магнитные моменты парамагнетиков никогда не устанавливаются точно по направлению поля. В этом и заключается причина их низкой магнитной восприимчивости.

Силы межатомного и межмолекулярного взаимодействия также играют значительную роль, способствуя либо, напротив, оказывая сопротивление упорядочиванию элементарных магнитных моментов. Это обусловливает большое разнообразие магнитных свойств вещества парамагнетиков.

К этой группе веществ относятся многие металлы, например вольфрам, алюминий, марганец, натрий, магний. Парамагнетиками являются кислород, соли железа, некоторые оксиды.

Ферромагнетики

Существует небольшая группа веществ, которые благодаря особенностям структуры обладают очень высокими магнитными свойствами. Первым металлом, у которого обнаружились эти качества, было железо, и благодаря ему данная группа получила наименование ферромагнетиков.

Разбиение ферромагнетика на домены

Строение ферромагнетиков характеризуется наличием особых структур – доменов. Это области, где намагниченность образуется спонтанно. Благодаря особенностям межатомного и межмолекулярного взаимодействия у ферромагнетиков устанавливается наиболее энергетически выгодное расположение атомных и электронных магнитных моментов. Они приобретают параллельную направленность по так называемым направлениям легкого намагничивания. Однако весь объем, например, кристалла железа не может приобрести однонаправленную самопроизвольную намагниченность – это повышало бы общую энергию системы. Поэтому система разбивается на участки, спонтанная намагниченность которых в ферромагнитном теле компенсирует друг друга. Так образуются домены.

Магнитная восприимчивость ферромагнетиков чрезвычайно велика, может составлять от нескольких десятков до сотен тысяч и в большой степени зависит от напряженности внешнего поля. Причина этого заключается в том, что ориентация доменов по направлению поля также оказывается энергетически выгодной. Направление вектора намагниченности части доменов обязательно совпадет с вектором напряженности поля, и энергия их будет наименьшей. Такие области разрастаются, и одновременно сокращаются невыгодно ориентированные домены. Намагниченность увеличивается, и нарастает магнитная индукция. Процесс происходит неравномерно, и график связи индукции с напряженностью внешнего поля называют кривой намагничивания ферромагнитного вещества.

При повышении температуры до некоторой пороговой величины, называемой точкой Кюри, доменное строение вследствие усиления теплового движения нарушается. В этих условиях ферромагнетик проявляет парамагнитные качества.

Помимо железа и стали, ферромагнитные свойства присущи кобальту и никелю, некоторым сплавам и редкоземельным металлам.

Ферримагнетики и антиферромагнетики

Двум видам магнетиков также свойственна доменная структура, но магнитные моменты в них ориентируются антипараллельно. Это такие группы, как:

  • Антиферромагнетики. Магнитные моменты доменов в этих веществах равны по численному значению и взаимно скомпенсированы. По этой причине магнитные свойства материалов антиферромагнетиков характеризуются крайне низкой магнитной восприимчивостью. Во внешнем поле они проявляют себя как очень слабые парамагнетики. Выше пороговой температуры, называемой точкой Нееля, такое вещество становится обычным парамагнетиком. Антиферромагнетиками являются хром, марганец, некоторые редкоземельные металлы, актиноиды. Некоторые антиферромагнитные сплавы имеют две точки Нееля. Когда температура меньше нижнего порога, материал становится ферромагнитным.
  • Ферримагнетики. У веществ этого класса величины магнитных моментов разных структурных единиц не равны, благодаря чему не происходит их взаимной компенсации. Магнитная восприимчивость их зависит от температуры и напряженности намагничивающего поля. К ферримагнетикам относятся ферриты, в состав которых входит оксид железа.

Ферритовые сердечники

Понятие о гистерезисе. Постоянный магнетизм

Ферромагнитные и ферримагнитные материалы обладают свойством остаточной намагниченности. Это свойство обусловлено явлением гистерезиса – запаздывания. Суть его состоит в отставании изменения намагниченности материала от изменения внешнего поля. Если по достижении насыщения снижать напряженность поля, намагниченность будет меняться не в соответствии с кривой намагничивания, а более пологим образом, так как значительная часть доменов остается ориентирована соответственно вектору поля. Благодаря этому явлению существуют постоянные магниты.

Читайте также:  Состав мед лимон имбирь противопоказания

Размагничивание происходит при перемене направления поля, при достижении им некоторой величины, называемой коэрцитивной (задерживающей) силой. Чем больше ее величина, тем лучше вещество удерживает остаточную намагниченность. Замыкание петли гистерезиса происходит при следующем изменении напряженности по направлению и величине.

Петля гистерезиса

Магнитная твердость и мягкость

Явление гистерезиса сильно влияет на магнитные свойства материалов. Вещества, у которых на графике гистерезиса петля расширена, требующие для размагничивания значительной коэрцитивной силы, называют магнитотвердыми, материалы с узкой петлей, гораздо легче поддающиеся размагничиванию – магнитомягкими.

В переменных полях магнитный гистерезис проявляется особенно ярко. Он всегда сопровождается выделением тепла. Кроме того, в переменном магнитном поле в магнетике возникают вихревые индукционные токи, выделяющие особенно много тепла.

Многие ферромагнетики и ферримагнетики применяются в оборудовании, функционирующем на переменном токе (например, сердечники электромагнитов) и при работе все время перемагничиваются. Для того чтобы уменьшить энергопотери на гистерезис и динамические потери на вихревые токи, в таком оборудовании применяют магнитомягкие материалы, такие как чистое железо, ферриты, электротехнические стали, сплавы (например, пермаллой). Есть и другие способы минимизировать потери энергии.

Магнитотвердые вещества, напротив, используются в оборудовании, работающем на постоянном магнитном поле. Они значительно дольше сохраняют остаточную намагниченность, но их труднее намагнитить до насыщения. Многие из них в настоящее время представляют собой композиты разных типов, например, металлокерамические или неодимовые магниты.

Еще немного об использовании магнитных материалов

Современные высокотехнологичные производства требуют применения магнитов, изготовляемых из конструкционных, в том числе композитных материалов с заданными магнитными свойствами веществ. Таковы, например, магнитные нанокомпозиты ферромагнетик-сверхпроводник или ферромагнетик-парамагнетик, используемые в спинтронике, или магнитополимеры – гели, эластомеры, латексы, феррожидкости, находящие самое широкое применение.

Неодимовые магниты

Различные магнитные сплавы тоже чрезвычайно востребованы. Сплав неодим-железо-бор характеризуется высокой устойчивостью к размагничиванию и мощностью: упомянутые выше неодимовые магниты, являясь наиболее мощными на сегодняшний день постоянными магнитами, применяются в самых разных отраслях, несмотря на наличие некоторых недостатков, таких как хрупкость. Их используют в магнитно-резонансных томографах, ветрогенераторах, при очистке технических жидкостей и подъеме тяжелых грузов.

Очень интересны перспективы использования антиферромагнетиков в низкотемпературных наноструктурах для изготовления ячеек памяти, позволяющих существенно увеличивать плотность записи без нарушения состояния соседних битов.

Надо полагать, что применение магнитных свойств веществ с заданными характеристиками будет все более расширяться и обеспечит серьезные технологические прорывы в разных областях.

Источник

Магнетики — вещества, обладающие магнитными свойствами. Магнетиками являются все вещества, поскольку согласно гипотезе Ампера, магнитные свойства создаются элементарными токами (движением электрона в атоме).

Электрон, вращающийся по замкнутой орбите, представляет собой ток, направление которого противоположно движению электрона. Тогда это движение создает магнитное поле, магнитный момент которого pm = IS направлен по правилу правой руки перпендикулярно плоскости орбиты.

 Pm

Кроме того, независимо от орбитального движения, электроны обладают собственным магнитным моментом (спином). Таким образом, магнетизм атомов обусловлен двумя причинами: движением электронов по орбитам и собственным магнитным моментом. 

electron spin

При внесении магнетика во внешнее магнитное поле с индукцией В0 он намагничивается, то есть создает собственное магнитное поле с индукцией В’, которое складывется с внешним:

В =  В0 + В’

Индукция собственного магнитного поля зависит как от внешнего поля, так и от магнитной восприимчивости χ вещества:

 В’ = χ В0

Тогда В = В0 + χ В0 = В0 (1 + χ)

Но магнитная индукция внутри магнетика зависит от магнитной проницаемости вещевтва:

В = μ В0 

Отсюда μ = 1 + χ.

 Магнитная восприимчивость χ — физическая величина, характеризующая связь между магнитным моментом (намагниченностью) вещества и магнитным полем в этом веществе

hi

Магнитная проницаемость μ — коэффициент (зависящий от свойств среды), характеризующий связь между магнитной индукцией и напряжённостью магнитного поля в веществе 

mu

В отличие от диэлектрической проницаемости вещества, которая всегда больше единицы, магнитная проницаемость может быть как больше, так и меньше единицы. Различают диамагнетики (μ < 1), парамагнетики (μ > 1) и ферромагнетики (μ >> 1).

Диамагнетики

Диамагнетиками называются вещества, которые намагничиваются во внешнем магнитном поле в направлении, противоположном направлению вектора магнитной индукции поля.

К диамагнетикам относятся вещества, магнитные моменты атомов, молекул или ионов которых в отсутствие внешнего магнитного поля равны нулю. Диамагнетиками являются инертные газы, молекулярный водород и азот, цинк, медь, золото, висмут, парафин и многие другие органические и неорганические соединения.

В случае отсутствия магнитного поля диамагнетик немагнитен, поскольку в данном случае магнитные моменты электронов взаимно компенсируются, и суммарный магнитный момент атома равен нулю.

Т.к. диамагнитный эффект обусловлен действием внешнего магнитного поля на электроны атомов вещества, то диамагнетизм свойственен всем веществам.

Читайте также:  Эфирные масла для беременных противопоказания

Следует отметить, что магнитная проницаемость у диамагнетиков µ < 1. Вот, например, у золота µ = 0,999961, у меди µ = 0,9999897 и т.д.

В магнитном поле диамагнетики располагаются перпендикулярно силовым линиям внешнего магнитного поля.

Diamagnetik

Парамагнетики

Парамагнетики вещества, намагничивающиеся во внешнем магнитном поле по направлению поля.

У парамагнитных веществ при отсутствии внешнего магнитного поля магнитные моменты электронов не компенсируют друг друга, и атомы (молекулы) парамагнетиков всегда обладают магнитным моментом. Однако вследствие теплового движения молекул их магнитные моменты ориентированы беспорядочно, поэтому парамагнитные вещества магнитными свойствами не обладают. При внесении парамагнетиков во внешнее магнитное поле устанавливается преимущественная ориентация магнитных моментов атомов по полю (полной ориентации препятствует тепловое движение атомов).

Таким образом, парамагнетик намагничивается, создавая собственное магнитное поле, совпадающее по направлению с внешним полем и усиливающее его.

При ослаблении внешнего магнитного поля до нуля ориентация магнитных моментов вследствие теплового движения нарушается и парамагнетик размагничивается.

Вот некоторые парамагнитные вещества: алюминий µ = 1,000023; воздух µ = 1,00000038.

Во внешнем магнитном поле парамагнетики располагаются вдоль силовых линий.

Paramagnetik

Ферромагнетики

Ферромагнетиками называются твердые вещества, обладающие при не слишком высоких температурах самопроизвольной (спонтанной) намагниченностью, которая сильно изменяется под влиянием внешних воздействий – магнитного поля, деформации, изменения температуры.

Ферромагнетики в отличие от слабомагнитных диа- и парамагнетиков являются сильномагнитными средами:

внутреннее магнитное поле в них может в сотни и тысячи раз превосходить внешнее поле.

Ферромагнитные материалы в большой или меньшей степени обладают магнитной анизотропией, т.е. свойством намагничиваться с различной степенью трудности в различных направлениях.

Магнитные свойства ферромагнитных материалов сохраняются до тех пор, пока их температура не достигнет значения, называемого точкой Кюри. При температурах выше точки Кюри ферромагнетик ведет себя во внешнем магнитном поле как парамагнитное вещество. Он не только теряет свои ферромагнитные свойства, но у него изменяется теплоемкость, электропроводимость и некоторые другие физические характеристики.

Точка Кюри для различных материалов различна:

 Железо (Fe)  780 οС
 Никель (Ni) 350 οС
 Кобальт (Co) 1130 οС
 Гадолиний (Gd)16 οС
 Диспрозий (Dy)-186 οС

Природа ферромагнетизма:

Согласно представлениям Вейсса (1865-1940), его описательной теории ферромагнетизма, ферромагнетики при температурах ниже точки Кюри обладают спонтанной намагниченностью независимо от наличия внешнего намагничивающего поля. Однако это вносило некое противоречие, т.к. многие ферромагнитные материалы при температурах ниже точки Кюри не намагничены.

Для устранения этого противоречия Вейсс ввел гипотезу, согласно которой ферромагнетик ниже точки Кюри разбивается на большое число малых микроскопических (порядка 10-3– 10-2 см) областей – доменов, самопроизвольно намагниченных до насыщения.

domeny

При отсутствии внешнего магнитного поля магнитные моменты отдельных атомов ориентированы хаотически и компенсируют друг друга, поэтому результирующий магнитный момент ферромагнетика равен нулю, т.е. ферромагнетик не намагничен.

Внешнее магнитное поле ориентирует по полю магнитные моменты не отдельных атомов, как в парамагнетике, а целых областей спонтанной намагниченности. Поэтому с ростом H намагниченность  и магнитная индукция уже в слабых полях растет довольно быстро.

Curve

Различные ферромагнитные материалы обладают неодинаковой способностью проводить магнитный поток. Основной характеристикой ферромагнитного материала является петля магнитного гистерезиса В(Н). Эта зависимость определяет значение магнитной индукции, которая будет возбуждена в магнитопроводе из данного материала при воздействии некоторой напряженности поля.

gisterezis

Рассмотрим процесс перемагничивания ферромагнетика. Пусть первоначально он был полностью размагничен. Сначала индукция быстро возрастает за счет того, что магнитные диполи ориентируются по силовым линиям поля, добавляя свой магнитный поток к внешнему. Затем ее рост замедляется по мере того, как количество неориентированных диполей уменьшается и, наконец, когда практически все они ориентируются по внешнему полю рост индукции прекращается и наступает режим насыщения.

Гистерезисом называют отставание изменения индукции от напряженности магнитного поля.

Симметричная петля гистерезиса, полученная при максимальной напряженности поля Hm, соответствующей насыщению ферромагнетика, называется предельным циклом.

Для предельного цикла устанавливают также значения индукции Br при H = 0, которое называется остаточной индукцией, и значение Hc при B = 0, называемое коэрцитивной силой. Коэрцитивная (удерживающая) сила показывает, какую напряженность внешнего поля следует приложить к веществу, чтобы уменьшить остаточную индукцию до нуля.

Форма и характерные точки предельного цикла определяют свойства ферромагнетика. Вещества с большой остаточной индукцией, коэрцитивной силой и площадью петли гистерезиса называются магнитнотвердыми.

Они используются для изготовления постоянных магнитов. Вещества с малой остаточной индукцией и площадью петли гистерезиса (кривая 2 рис.8а) называются магнитномягкими и используются для изготовления магнитопроводов электротехнических устройств, в особенности работающих при периодически изменяющемся магнитном потоке.

image086

Площадь петли гистерезиса характеризует работу, которую необходимо совершить для перемагничивания ферромагнетика. Если по условиям работы ферромагнетик должен перемагничиваться, то его следует делать из магнито-мягкого материала, площадь петли гистерезиса которого мала. Из мягких ферромагнетиков делают сердечники трансформаторов. 

Из жестких ферромагнетиков (сталь и ее сплавы) делают постоянные магниты.

                                     

Источник