No химические и физические свойства и противопоказания

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 15 мая 2020;
проверки требуют 2 правки.

Оксид азота​(IV)​
Систематическое
наименование
Оксид азота​(IV)​
Традиционные названия диоксид азота; двуокись азота, тетраоксид диазота
Хим. формула NO2
Рац. формула NO2
Состояние бурый газ или желтоватая жидкость
Молярная масса 46,0055 г/моль
Плотность г. 2,0527 г/л
ж. 1,4910г/см³
тв. 1,536 г/см³
Энергия ионизации 1,6E-18 Дж[1]
Температура
 • плавления -11,2 °C
 • кипения +21,1 °C
Энтальпия
 • образования 33,10 кДж/моль
Давление пара 720 ± 1 мм рт.ст.[1]
Рег. номер CAS 10102-44-0
PubChem 3032552
Рег. номер EINECS 233-272-6
SMILES

N(=O)[O]

InChI

1S/NO2/c2-1-3

JCXJVPUVTGWSNB-UHFFFAOYSA-N

RTECS QW9800000
ChEBI 33101
Номер ООН 1067
ChemSpider 2297499
Предельная концентрация 2 мг/м³
Токсичность Токсичен, окислитель
NFPA 704

4

2

OX

Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
 Медиафайлы на Викискладе

Оксид азота (IV) (диоксид азота, двуокись азота) NO2 — бинарное неорганическое соединение азота с кислородом. Представляет собой ядовитый газ красно-бурого цвета с резким неприятным запахом или желтоватую жидкость.

В обычном состоянии NO2 существует в равновесии со своим димером N2O4. Склонность к его образованию объясняется наличием в молекуле NO2 неспаренного электрона.

При температуре 140 °C диоксид азота состоит только из молекул NO2, но очень тёмного, почти чёрного цвета.
В точке кипения NO2 представляет собой желтоватую жидкость, содержащую около 0,1 % NO2.
При температуре ниже +21°С — это бесцветная жидкость (или желтоватая из-за примеси мономера).
При температуре ниже −12 °C белые кристаллы состоят только из молекул N2O4.

Получение[править | править код]

В лаборатории NO2 обычно получают воздействием концентрированной азотной кислоты на медь:

.

Также взаимодействием нитритов с серной кислотой:

,

оксид азота(II) NO тотчас же реагирует с кислородом:

/

Также его можно получить термическим разложением нитрата свинца, однако при проведении реакции следует соблюдать осторожность[почему?]:

Разработан более совершенный лабораторный способ получения NO2[2].

Последняя реакция была разработана и реализована в новой химической машине — генераторе окислителя ракетного топлива марки NTO согласно ГОСТ Р ИСО 15859-5-2010[3].

Другие способы получения оксида азота(IV) перечислены в статье [2].

Химические свойства[править | править код]

Кислотный оксид. NO2 отличается высокой химической активностью. Он взаимодействует с неметаллами (фосфор, сера и углерод горят в нём). В этих реакциях NO2 — окислитель:

Окисляет SO2 в SO3 — на этой реакции основан нитрозный метод получения серной кислоты:

При растворении оксида азота(IV) в воде образуются азотная и азотистая кислоты (реакция диспропорционирования):

Поскольку азотистая кислота неустойчива, при растворении NO2 в тёплой воде образуются HNO3 и NO:

Если растворение проводить в избытке кислорода, образуется только азотная кислота (NO2 проявляет свойства восстановителя):

При растворении NO2 в щелочах образуются как нитраты, так и нитриты:

Жидкий NO2 применяется для получения безводных нитратов:

В реакциях с галогенами образует соли нитрония, нитрозила и оксиды галогенов:

Применение[править | править код]

Диоксид азота применяется при производстве серной и азотной кислот. Также диоксид азота используется в качестве окислителя в жидком ракетном топливе и смесевых взрывчатых веществах.

Физиологическое действие и токсичность[править | править код]

Оксид азота (IV) (диоксид азота) особо токсичен, является мощным окислителем. Числится в списке сильнодействующих ядовитых веществ. В больших дозах может стать сильнейшим неорганическим ядом. Даже в небольших концентрациях он раздражает дыхательные пути, в больших концентрациях вызывает отёк лёгких.

«Лисий хвост»[править | править код]

На фото справа — «лисий хвост» на Нижнетагильском металлургическом комбинате

«Лисий хвост» — жаргонное название выбросов в атмосферу оксидов азота (NOx) на химических предприятиях (иногда — из выхлопных труб автомобилей). Название происходит от оранжево-бурого цвета диоксида азота. При низких температурах диоксид азота димеризуется и становится бесцветным. В летний сезон «лисьи хвосты» наиболее заметны, так как в выбросах возрастает концентрация мономерной формы.

Вредное воздействие[править | править код]

Оксиды азота, улетучивающиеся в атмосферу, представляют серьёзную опасность для экологической ситуации, так как способны вызывать кислотные дожди, а также сами по себе являются токсичными веществами, вызывающими раздражение слизистых оболочек.

Двуокись азота воздействует в основном на дыхательные пути и лёгкие, а также вызывает изменения состава крови, в частности, уменьшает содержание в крови гемоглобина.

Образующаяся в результате взаимодействия диоксида азота с водой азотная кислота является сильным коррозионным агентом.

Примечания[править | править код]

Литература[править | править код]

  • 1. Химическая энциклопедия / Редкол.: Кнунянц И.Л. и др.. — М.: Советская энциклопедия, 1988. — Т. 1 (Абл-Дар). — 623 с.
  • 2. A New Method of Nitrogen Dioxide Production / D.A. Rudakov / June 2018. doi: 10.13140/RG.2.2.19010.27844 (https://www.researchgate.net/publication/325846942_A_New_Method_of_Nitrogen_Dioxide_Production)

Источник

§ 3. ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА

Физические свойства. К физическим свойствам металлов относят цвет, плотность, температуру плавления, теплопроводность, тепловое расширение, теплоемкость, электропроводность, магнитные свойства и др.
Цветом называют способность металлов отражать световое излучение с определенной длиной волны. Например, медь имеет розово-красный цвет, алюминий — серебристо-белый.
Плотность металла характеризуется его массой, заключенной в единице объема. По плотности все металлы делят на легкие (менее 4500 кг/м3) и тяжелые. Плотность имеет большое значение при создании различных изделий. Например, в самолето- и ракетостроении стремятся использовать более легкие металлы и сплавы (алюминиевые, магниевые, титановые), что способствует снижению массы изделий.
Температурой плавления называют температуру, при которой металл переходит из твердого состояния в жидкое. По температуре плавления различают тугоплавкие металлы (вольфрам 3416°С, тантал 2950°С, титан 1725°С, и др.) и легкоплавкие (олово 232°С, свинец 327°С, цинк 419,5°С, алюминий 660°С). Температура плавления имеет большое значение при выборе металлов для изготовления литых изделий, сварных и паяных соединений, термоэлектрических приборов и других изделий. В единицах СИ температуру плавления выражают в градусах Кельвина (К).
Теплопроводностью называют способность металлов передавать тепло от более нагретых к менее нагретым участкам тела. Серебро, медь, алюминии обладают большой теплопроводностью. Железо имеет теплопроводность примерно в три раза меньше, чем алюминий, и в пять раз меньше, чем медь. Теплопроводность имеет большое значение при выборе материала для деталей. Например, если металл плохо проводит тепло, то при нагреве и быстром охлаждении (термическая обработка, сварка) в нем образуются трещины. Некоторые детали машин (поршни двигателей, лопатки турбин) должны быть изготовлены из материалов с хорошей теплопроводностью. В единицах СИ теплопроводность имеет размерность Вт/(м∙К).
Тепловым расширением называют способность металлов увеличиваться в размерах при нагревании и уменьшаться при охлаждении. Тепловое расширение характеризуется коэффициентом линейного расширения α=(l2-l1)/[l1(t2-t1)], где l1 и l2 длины тела при температурах t1 и t2. Коэффициент объемного расширения равен 3α. Тепловые расширения должны учитываться при сварке, ковке и горячей объемной штамповке, изготовлении литейных форм, штампов, прокатных валков, калибров, выполнении точных соединений и сборке приборов, при строительстве мостовых ферм, укладке железнодорожных рельс.
Теплоемкостью называют способность металла при нагревании поглощать определенное количество тепла. В единицах СИ имеет размерность Дж/К. Теплоемкость различных металлов сравнивают по величине удельной теплоемкости — количеству тепла, выраженному в больших калориях, которое требуется для повышения температуры 1 кг металла на 1°С (в единицах СИ — Дж/(кг∙К).
Способность металлов проводить электрический ток оценивают двумя взаимно противоположными характеристиками — электропроводностью и электросопротивлением. Электрическая проводимость оценивается в системе СИ в сименсах (См), а удельная электропроводность — в Cм/м, аналогично электросопротивление выражают в омах (Ом), а удельное электросопротивление — в Ом/м. Хорошая электропроводность необходима, например, для токонесущих проводов (медь, алюминий). При изготовлении электронагревателей приборов и печей необходимы сплавы с высоким электросопротивлением (нихром, константан, манганин). С повышением температуры металла его электропроводность уменьшается, а с понижением — увеличивается.
Магнитные свойства характеризуются абсолютной магнитной проницаемостью или магнитной постоянной, т. е. способностью металлов намагничиваться. В единицах СИ магнитная постоянная имеет размерность Гн/м. Высокими магнитными свойствами обладают железо, никель, кобальт и их сплавы, называемые ферромагнитными. Материалы с магнитными свойствами применяют в электротехнической аппаратуре и для изготовления магнитов.
Химические свойства. Химические свойства характеризуют способность металлов и сплавов сопротивляться окислению или вступать в соединение с различными веществами: кислородом воздуха, растворами кислот, щелочей и др. Чем легче металл вступает в соединение с другими элементами, тем быстрее он разрушается. Химическое разрушение металлов под действием на их поверхность внешней агрессивной среды называют коррозией.
Металлы, стойкие к окислению при сильном нагреве, называют жаростойкими или окалиностойкими. Такие металлы применяют для изготовления деталей, которые эксплуатируются в зоне высоких температур.
Сопротивление металлов коррозии, окалинообразованию и растворению определяют по изменению массы испытуемых образцов на единицу поверхности за единицу времени.
Химические свойства металлов обязательно учитываются при изготовлении тех или иных изделий. Особенно это относится к изделиям или деталям, работающим в химически агрессивных средах.

Читайте также:  Озонотерапия показания и противопоказания видео

Источник

Запрос «Веселящий газ» перенаправляется сюда; см. также другие значения.

Оксид азота​(I)​
Систематическое
наименование
Оксонитрид азота​(I)​
Хим. формула N2O
Состояние бесцветный газ
Молярная масса 44,0128 г/моль
Плотность 1,98 г/л (при н. у.)
Энергия ионизации 12,89 ± 0,01 эВ[1]
Температура
 • плавления -90,86 °C
 • кипения -88,48 °C
Давление пара 51,3 ± 0,1 атм[1]
Рег. номер CAS 10024-97-2
PubChem 948
Рег. номер EINECS 233-032-0
SMILES

N#[N+][O-]

InChI

1S/N2O/c1-2-3

GQPLMRYTRLFLPF-UHFFFAOYSA-N

Кодекс Алиментариус E942
RTECS QX1350000
ChEBI 17045
ChemSpider 923
NFPA 704

2

OX

Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
 Медиафайлы на Викискладе

Окси́д азо́та(I) (оксид диазота, закись азота, веселящий газ) — соединение с химической формулой N2O. Иногда называется «веселящим газом» из-за производимого им опьяняющего эффекта, приступов смеха. При нормальной температуре это бесцветный негорючий газ с приятным сладковатым запахом и привкусом. Закись азота является третьим по значимости долгоживущим парниковым газом, накопление которого в атмосфере Земли и есть одна из основных причин глобального потепления, т.к. N2O является веществом, которое разрушает стратосферный озон.[2]

История[править | править код]

Впервые был получен в 1772 году Джозефом Пристли, который назвал его «дефлогистированным нитрозным воздухом»[3]. В 1799 г. его исследовал Г. Дэви.

Строение молекулы[править | править код]

Строение молекулы оксида азота(I) описывается следующими резонансными формами:

Наибольший вклад вносит N-оксидная форма оксида азота(I). Порядок связи N-N оценивается как 2,73, порядок связи N-O — как 1,61. Резонансная структура с возможностью противоположного расположения зарядов в молекуле N2O обусловливает низкий дипольный момент молекулы, равный 0,161 Д.

Физические свойства[править | править код]

Бесцветный газ, тяжелее воздуха (относительная плотность 1,527), с характерным сладковатым запахом. Растворим в воде (0,6 объёма N2O в 1 объёме воды при 25 °C, или 0,15 г/100 мл воды при 15 °C), растворим также в этиловом спирте, эфире, серной кислоте. При 0 °C и давлении 30 атм, а также при комнатной температуре и давлении 40 атм сгущается в бесцветную жидкость. Из 1 кг жидкой закиси азота образуется 500 л газа. Молекула закиси азота имеет дипольный момент 0,161 Д, коэффициент преломления в жидком виде равен 1,330 (для жёлтого света с длиной волны 589 нм). Давление паров жидкого N2O при 20 °C равно 5150 кПа.

Химические свойства[править | править код]

Относится к несолеобразующим оксидам, с водой, с растворами щелочей и кислот не взаимодействует. Не воспламеняется, но поддерживает горение: тлеющая лучина, опущенная в него, загорается, как в чистом кислороде. Смеси с эфиром, циклопропаном, хлорэтаном в определённых концентрациях взрывоопасны. Оксид азота(I) является озоноразрушающим веществом, а также парниковым газом. В нормальных условиях N2O химически инертен, при нагревании проявляет свойства окислителя:

Читайте также:  Мятный чай противопоказания для детей

При взаимодействии с сильными окислителями N2O может проявлять свойства восстановителя:

При нагревании N2O разлагается:

Оксид азота(I) реагирует с амидами металлов с образованием соответствующих неорганических азидов:

При взаимодействии аммиака над катализатором образуется азид аммония:

Получение[править | править код]

Оксид азота(I) получают осторожным (опасность взрывного разложения!) нагреванием сухого нитрата аммония:

Более удобным способом является нагревание сульфаминовой кислоты с 73%-й азотной кислотой:

В химической промышленности закись азота является побочным продуктом и для её разрушения используют каталитические конвертеры, так как выделение в виде товарного продукта, как правило, экономически нецелесообразно.

Биологическое значение[править | править код]

Закись азота образуется как при ферментативном, так и при неферментативном восстановлении из окиси азота (II)[4]. В опытах in vitro было обнаружено, что закись азота образуется при реакции между окисью азота (II) и тиолом или тиол-содержащими соединениями[5]. Сообщается, что образование N2O из окиси азота было обнаружено в цитозоле гепатоцитов, что заставляет предполагать возможное образование этого газа в клетках млекопитающих в физиологических условиях[6]. В организме бактерий закись азота образуется в ходе процесса, называемого денитрификацией, и катализируемого нитрооксид-редуктазой. Ранее этот процесс предполагался специфичным для некоторых видов бактерий и отсутствующим у млекопитающих, но новые данные заставляют предполагать, что это не так. Было показано, что физиологически релевантные концентрации закиси азота ингибируют как ионные токи, так и опосредуемые эксайтотоксичностью нейродегенеративные процессы, происходящие при чрезмерном возбуждении NMDA-рецепторов[7]. Также закись азота ингибирует биосинтез метионина, угнетая активность метионин-синтетазы и скорость превращения гомоцистеина в метионин и повышая концентрацию гомоцистеина в культурах лимфоцитов[8] и в биоптатах человеческой печени[9]. Хотя закись азота не является лигандом для гема, и не реагирует с тиоловыми группами, она обнаруживается во внутренних структурах гемосодержащих белков, таких, как гемоглобин, миоглобин, цитохромоксидаза[10]. Способность закиси азота нековалентно, обратимо изменять структуру и функции гемосодержащих белков была показана исследованием сдвига инфракрасных спектров тиоловых групп цистеинов гемоглобина[11] и тем, что закись азота способна частично и обратимо ингибировать функцию цитохромоксидазы C[12]. Точные механизмы этого нековалентного взаимодействия закиси азота с гемосодержащими белками и биологическое значение этого явления заслуживают дальнейших исследований. В настоящее время представляется возможным, что эндогенная закись азота участвует в регуляции активности NMDA[7] и опиоидной системы[13][14]. Обладает нейротоксическими свойствами.

Применение[править | править код]

Существует два вида закиси азота — пищевая, или медицинская для медицинского применения (высокой степени очистки) и техническая — технический оксид диазота, в котором есть примеси, количество которых указывается в соответствующих техусловиях (ТУ) на данный газ. «Медицинская» закись азота используется в основном как средство для ингаляционного наркоза, находит применение и в пищевой промышленности (например, для изготовления взбитых сливок) в качестве пропеллента. Как пищевой продукт, имеет индекс E942. Также иногда используется для улучшения технических характеристик двигателей внутреннего сгорания. В промышленности применяется как пропеллент и упаковочный газ. Может использоваться в ракетных двигателях в качестве окислителя, а также как единственное топливо в монокомпонентных ракетных двигателях.

Средство для ингаляционного наркоза[править | править код]

Малые концентрации закиси азота вызывают лёгкое опьянение (отсюда название — «веселящий газ»). При вдыхании чистого газа быстро развиваются состояние опьянения и сонливость. Закись азота обладает слабой наркотической активностью, в связи с чем в медицине её применяют в больших концентрациях. В смеси с кислородом при правильном дозировании (до 80 % закиси азота) вызывает хирургический наркоз. Часто применяют комбинированный наркоз, при котором закись азота сочетают с другими средствами для наркоза, анальгетиками, миорелаксантами и т. п. Например, применяется комбинированный наркоз закисью азота и гексеналом с фентаниловой анальгезией и миорелаксацию дитилином.

Закись азота, предназначенная для медицинских нужд (высокой степени очистки от примесей), не вызывает раздражения дыхательных путей. Будучи, в процессе вдыхания, растворенной в плазме крови, практически не изменяется и не метаболизируется, с гемоглобином не связывается. После прекращения вдыхания выделяется (в течение 10—15 мин) через дыхательные пути в неизменном виде. Период полувыведения — 5 минут.

Закись азота используется для ингаляционного наркоза в хирургии, она удобна для кратковременного наркоза (и рауш-наркоза) в хирургической стоматологии, а также для обезболивания родов (поскольку слабо влияет на родовую деятельность и нетоксична для плода).

Смесь закиси азота с кислородом получают и непосредственно применяют при помощи специальных аппаратов для наркоза. Обычно начинают со смеси, содержащей 70—80 % закиси азота и 30—20 % кислорода, затем количество кислорода увеличивают до 40—50 %[источник не указан 2544 дня]. Если не удается получить необходимую глубину наркоза, при концентрации закиси азота 70—75 %, добавляют более мощные наркотические средства: фторотан, диэтиловый эфир, барбитураты.

Для более полного расслабления мускулатуры применяют миорелаксанты, при этом не только усиливается расслабление мышц, но также улучшается течение наркоза.

После прекращения подачи закиси азота следует во избежание гипоксии продолжать давать кислород в течение 4—5 мин.

Применять закись азота, как и любое средство для наркоза, необходимо с осторожностью, особенно при выраженных явлениях гипоксии и нарушении диффузии газов в лёгких.

Для обезболивания родов пользуются методом прерывистой аутоанальгезии с применением, при помощи специальных наркозных аппаратов, смеси закиси азота (75 %) и кислорода. Роженица начинает вдыхать смесь при появлении предвестников схватки и заканчивает вдыхание на высоте схватки или по её окончании.

Читайте также:  Противопоказания при аневризме аорты брюшной полости

Для уменьшения эмоционального возбуждения, предупреждения тошноты и рвоты и потенцирования действия закиси азота возможна премедикация внутримышечным введением 0,5%-го раствора диазепама (седуксена, сибазона) в количестве 1—2 мл (5—10 мг).

Форма выпуска: в металлических баллонах вместимостью 10 л под давлением 50 атм в сжиженном состоянии. Баллоны окрашены в серый цвет и имеют надпись «Для медицинского применения».

При использовании закиси азота для анестезии и пограничных уровнях витамина в B12 развивается полинейропатия вызванная дефицитом B12. Эффект описан в работах[15][16] и др. Необходима терапия фолатами и B12.

В двигателях внутреннего сгорания[править | править код]

Закись азота иногда используется для улучшения технических характеристик двигателей внутреннего сгорания. В случае автомобильных применений вещество, содержащее закись азота, и горючее впрыскиваются во впускной (всасывающий) коллектор двигателя, что приводит к следующим результатам:

  • снижает температуру всасываемого в двигатель воздуха, обеспечивая плотный поступающий заряд смеси.
  • увеличивает содержание кислорода в поступающем заряде (воздух содержит лишь ~23,15 масс. % кислорода).
  • повышает скорость (интенсивность) сгорания в цилиндрах двигателя.

В реактивных двигателях[править | править код]

Иногда используется в качестве окислителя в однокомпонентном топливе с этаном, этиленом или ацетиленом в качестве топлива.

В пищевой промышленности[править | править код]

В пищевой промышленности соединение зарегистрировано в качестве пищевой добавки E942, как пропеллент и упаковочный газ (предотвращают порчу продукта). Закись азота используется в основном для распыления пищевых продуктов.

Примечания[править | править код]

  1. 1 2 https://www.cdc.gov/niosh/npg/npgd0465.html
  2. ↑ Thompson, R.L., Lassaletta, L., Patra, P.K. et al. Acceleration of global N2O emissions seen from two decades of atmospheric inversion. Nat. Clim. Chang. (2019) doi:10.1038/s41558-019-0613-7
  3. ↑ Joseph Priestly. Experiments and observations on different kinds of air. — Vol. 1. — 1775.
  4. Neil Hogg, Ravinder J. Singh, B. Kalyanaraman. The role of glutathione in the transport and catabolism of nitric oxide. (англ.) // FEBS Letters (англ.)русск. : journal. — 1996. — 18 March (vol. 382, no. 3). — P. 223—228. — doi:10.1016/0014-5793(96)00086-5. — PMID 8605974.
  5. DeMaster E. G., Quast B. J., Redfern B., Nagasawa HT. Reaction of nitric oxide with the free sulfhydryl group of human serum albumin yields a sulfenic acid and nitrous oxide. (англ.) // Biochemistry : journal. — 1995. — 12 September (vol. 34, no. 36). — P. 11494—11499. — PMID 7547878.
  6. Jinjoo Hyun, Gautam Chaudhuri, Jon M. Fukuto. The Reductive Metabolism of Nitric Oxide in Hepatocytes: Possible Interaction with Thiols (англ.) // Drug Metabolism & Disposition (англ.)русск. : journal. — 1999. — 1 September (vol. 27, no. 9). — P. 1005—1009. — PMID 10460799.
  7. 1 2 Jevtović-Todorović V., Todorović S. M., Mennerick S., Powell S., Dikranian K., Benshoff N., Zorumski C. F., Olney JW. Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and neurotoxin. (англ.) // Nat Med : journal. — 1998. — April (vol. 4, no. 4). — P. 460—463. — PMID 9546794.
  8. Christensen B., Refsum H., Garras A., Ueland PM. Homocysteine remethylation during nitrous oxide exposure of cells cultured in media containing various concentrations of folates. (англ.) // J Pharmacol Exp Ther. (англ.)русск. : journal. — 1992. — June (vol. 261, no. 3). — P. 1096—1105. — PMID 1602376.
  9. Koblin D. D., Waskell L., Watson J. E., Stokstad E. L., Eger EI 2nd. Nitrous oxide inactivates methionine synthetase in human liver. (англ.) // Anesth Analg (англ.)русск. : journal. — 1982. — February (vol. 61, no. 2). — P. 75—78. — PMID 7198880.
  10. Vijaya Sampath, Xiao-Jian Zhao, and Winslow S. Caughey. Anesthetic-like interactions of nitric oxide with albumin and hemeproteins. A mechanism for control of protein function. (англ.) // The Journal of Biological Chemistry : journal. — 2001. — 27 April (vol. 276, no. 17). — P. 13635—13643. — doi:10.1074/jbc.M006588200. — PMID 11278308.
  11. Aichun Dong, Ping Huang, Xiao-Jian Zhao, Vijaya Sampath, and Winslow S. Caughey. Characterization of sites occupied by the anesthetic nitrous oxide within proteins by infrared spectroscopy. (англ.) // The Journal of Biological Chemistry : journal. — 1994. — 30 September (vol. 269, no. 39). — P. 23911—23917. — PMID 7929038.
  12. Olof Einarsdottir, Winslow S. Caughey. Interactions of the anesthetic nitrous oxide with bovine heart cytochrome c oxidase. Effects on protein structure, oxidase activity, and other properties. (англ.) // The Journal of Biological Chemistry : journal. — 1988. — 5 July (vol. 263, no. 19). — P. 9199—9205. — PMID 2837481.
  13. Gillman M. A., Lichtigfeld FJ. Nitrous oxide acts directly at the mu opioid receptor. (англ.) // Anesthesiology (англ.)русск. : journal. — Lippincott Williams & Wilkins (англ.)русск., 1985. — March (vol. 62, no. 3). — P. 375—376. — PMID 2983587.
  14. Gillman M. A., Lichtigfeld FJ. A comparison of the effects of morphine sulphate and nitrous oxide analgesia on chronic pain states in man. (англ.) // J Neurol Sci (англ.)русск. : journal. — 1981. — January (vol. 49, no. 1). — P. 41—45. — PMID 7205318.
  15. I Chanarin. Cobalamins and nitrous oxide: a review. // Journal of Clinical Pathology. — 1980-10. — Т. 33, вып. 10. — С. 909—916. — ISSN 0021-9746.
  16. R. B. Layzer. Myeloneuropathy after prolonged exposure to nitrous oxide // The Lancet. — Elsevier, 1978-12-09. — Т. 2, вып. 8102. — С. 1227—1230. — ISSN 0140-6736.

Литература[править | править код]

  • Леонтьев А. В., Фомичева О. А., Проскурнина М. В., Зефиров Н. С. Современная химия оксида азота(I) (рус.) // Успехи химии. — Российская академия наук, 2001. — Т. 70, № 2. — С. 107—122.
  • Закись азота // Лекарственные средства / М. Д. Машковский. — Справочник Машковского on-line.

Источник